Skip to Main content Skip to Navigation
Journal articles

Identification of novel pheno-groups in heart failure with preserved ejection fraction using machine learning

Abstract : Objective - Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous syndrome. We aimed to derive HFpEF phenotype-based groups ('phenogroups') based on clinical and echocardiogram data using machine learning, and to compare clinical characteristics, proteomics and outcomes across the phenogroups. Methods - We applied model-based clustering to 32 echocardiogram and 11 clinical and laboratory variables collected in stable condition from 320 HFpEF outpatients in the Karolinska-Rennes cohort study (56% female, median 78 years (IQR: 71-83)). Baseline proteomics and the composite end point of all-cause mortality or heart failure (HF) hospitalisation were used in secondary analyses. Results - We identified six phenogroups, for which significant differences in the prevalence of concomitant atrial fibrillation (AF), anaemia and kidney disease were observed (p<0.05). Fifteen out of 86 plasma proteins differed between phenogroups (false discovery rate, FDR<0.05), including biomarkers of HF, AF and kidney function. The composite end point was significantly different between phenogroups (log-rank p<0.001), at short-term (100 days), mid-term (18 months) and longer-term follow-up (1000 days). Phenogroup 2 was older, with poorer diastolic and right ventricular function and higher burden of risk factors as AF (85%), hypertension (83%) and chronic obstructive pulmonary disease (30%). In this group a third experienced the primary outcome to 100 days, and two-thirds to 18 months (HR (95% CI) versus phenogroups 1, 3, 4, 5, 6: 1.5 (0.8-2.9); 5.7 (2.6-12.8); 2.9 (1.5-5.6); 2.7 (1.6-4.6); 2.1 (1.2-3.9)). Conclusions - Using machine learning we identified distinct HFpEF phenogroups with differential characteristics and outcomes, as well as differential levels of inflammatory and cardiovascular proteins.
Document type :
Journal articles
Complete list of metadata
Contributor : Laurent Jonchère <>
Submitted on : Wednesday, January 15, 2020 - 11:54:49 AM
Last modification on : Tuesday, January 19, 2021 - 3:57:03 PM

Links full text



Åsa K Hedman, Camilla Hage, Anil Sharma, Mary Julia Brosnan, Leonard Buckbinder, et al.. Identification of novel pheno-groups in heart failure with preserved ejection fraction using machine learning. Heart, BMJ Publishing Group, 2020, 106 (5), pp.342-349. ⟨10.1136/heartjnl-2019-315481⟩. ⟨hal-02440635⟩



Record views