K. Lim, R. R. Chua, H. Bow, P. A. Tambyah, K. Hadinoto et al.,

, Acta Biomater, vol.15, pp.127-165, 2015.

A. R. Shah and R. K. Goyal, Current status of the regulation for medical devices, Indian J Pharm Sci, vol.70, issue.6, pp.695-700, 2008.

I. Levin-reisman, I. Ronin, O. Gefen, I. Braniss, N. Shoresh et al., Antibiotic tolerance facilitates the evolution of resistance, Science, vol.355, issue.6327, pp.826-830, 2017.

, ARTICLE J. Name, vol.00, pp.1-3, 2013.

C. Heilmann, W. Ziebuhr, and K. Becker, Are coagulase-negative staphylococci virulent?, Clin Microbiol Infect, 2018.

M. G. Menegueti, M. A. Ciol, F. Bellissimo-rodrigues, M. Auxiliadora-martins, G. G. Gaspar et al., Long-term prevention of catheter-associated urinary urinary catheters: A quasiexperimental study, Medicine (Baltimore), vol.98, issue.8, p.14417, 2019.

I. Olsen, Biofilm-specific antibiotic tolerance and resistance

, Eur J Clin Microbiol Infect Dis, vol.34, issue.5, pp.877-86, 2015.

D. Davies, Understanding biofilm resistance to antibacterial agents, Nat Rev Drug Discov, vol.2, issue.2, pp.114-136, 2003.

U. Romling and C. Balsalobre, Biofilm infections, their resilience to therapy and innovative treatment strategies, Journal of Internal Medicine, vol.272, issue.6, pp.541-561, 2012.

S. Haussler, C. Fuqua, and . Biofilms, New Discoveries and Significant Wrinkles in a Dynamic Field, Journal of Bacteriology, vol.195, issue.13, pp.2947-2958, 2012.

C. W. Hall and T. F. Mah, Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria, FEMS Microbiol Rev, vol.41, issue.3, pp.276-301, 2017.

V. Post, L. G. Harris, M. Morgenstern, L. Mageiros, M. D. Hitchings et al.,

, Comparative Genomics Study of Staphylococcus epidermidis Isolates from Orthopedic-Device-Related Infections Correlated with Patient Outcome, J Clin Microbiol, vol.55, issue.10, pp.3089-3103, 2017.

C. R. Arciola, D. Campoccia, P. Speziale, L. Montanaro, and J. W. Costerton, Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilmresistant materials, Biomaterials, vol.33, issue.26, pp.5967-5982, 2012.

K. Lim, R. Chua, R. Saravanan, A. Basu, B. Mishra et al., Immobilization Studies of an Engineered Arginine-Tryptophan Rich Peptide on a Silicone Surface with, Antimicrobial and Antibiofilm Activity, vol.5, issue.17, pp.8821-8821, 2013.

J. Madeo and M. Frieri, Bacterial biofilms and chronic rhinosinusitis, Allergy and Asthma Proceedings, vol.34, issue.4, pp.335-341, 2013.

L. Travier, O. Rendueles, L. Ferrieres, J. Herry, and J. Ghigo, Escherichia coli Resistance to Nonbiocidal Antibiofilm Polysaccharides Is Rare and Mediated by Multiple Mutations Leading to Surface Physicochemical Modifications
URL : https://hal.archives-ouvertes.fr/hal-01001499

, Antimicrobial Agents and Chemotherapy, vol.57, issue.8, pp.3960-3968, 2013.

A. J. Macedo and W. Abraham, Can Infectious Biofilm be Controlled by Blocking Bacterial Communication?, Medicinal Chemistry, vol.5, issue.6, pp.517-528, 2009.

S. Chusri, K. Sompetch, S. Mukdee, S. Jansrisewangwong, T. Srichai et al., Inhibition of Staphylococcus epidermidis Biofilm Formation by Traditional Thai Herbal Recipes Used for Wound Treatment, 2012.

G. Laverty, S. P. Gorman, and B. F. Gilmore, Biomolecular mechanisms of staphylococcal biofilm formation, Future Microbiology, vol.8, issue.4, pp.509-524, 2013.

D. Chessa, G. Ganau, L. Spiga, A. Bulla, V. Mazzarello et al., Staphylococcus aureus and Staphylococcus epidermidis Virulence Strains as Causative Agents of Persistent Infections in Breast Implants, PLoS One, vol.11, issue.1, p.146668, 2016.

M. Vassallo, P. L. Genillier, B. Dunais, R. Kaphan, L. Saudes et al., Shortcourse daptomycin lock and systemic therapy for catheterrelated bloodstream infections: a retrospective cohort study in cancer patients with surgically implanted devices, J Chemother, vol.29, issue.4, pp.232-237, 2017.

W. F. Oliveira, P. Silva, R. Silva, G. Silva, G. Machado et al., Staphylococcus aureus and Staphylococcus epidermidis infections on implants, J Hosp Infect, vol.98, issue.2, pp.111-117, 2018.

J. Lee, I. R. Monk, G. Da-silva, A. Seemann, T. Chua et al., Strommenger B and others. Global spread of three multidrug-resistant lineages of Staphylococcus epidermidis, Nat Microbiol, 2018.

G. Méric, L. Mageiros, J. Pensar, M. Laabei, K. Yahara et al., Diseaseassociated genotypes of the commensal skin bacterium Staphylococcus epidermidis, Nat Commun, vol.9, issue.1, p.5034, 2018.

M. Otto, Staphylococcal biofilms, Bacterial Biofilms, vol.322, pp.207-228, 2008.

B. Li and T. J. Webster, Bacteria antibiotic resistance: New challenges and opportunities for implant-associated orthopedic infections, J Orthop Res, vol.36, issue.1, pp.22-32, 2018.

D. Campoccia, L. Montanaro, and C. R. Arciola, A review of the biomaterials technologies for infection-resistant surfaces, Biomaterials, vol.34, issue.34, pp.8533-54, 2013.

N. N. Ashton, A. G. Porter, S. T. Haussener, T. J. Sebahar, P. R. Looper et al., In vitro testing of a first-in-class trialkylnorspermidine-biaryl antibiotic in an anti-biofilm silicone coating, Acta Biomater, 2019.

Q. Gao, M. Yu, Y. Su, M. Xie, X. Zhao et al., Rationally designed dual functional block copolymers for bottlebrush-like coatings: In vitro and in vivo antimicrobial, antibiofilm, and antifouling properties, Acta Biomater, vol.51, pp.112-124, 2017.

D. S. Trentin, D. B. Silva, A. P. Frasson, O. Rzhepishevska, M. V. Da-silva et al., Ramstedt M and others. Natural Green Coating Inhibits Adhesion of Clinically Important Bacteria, Scientific Reports, vol.5, 2015.

C. Qin, C. Yu, Y. Shen, X. Fang, L. Chen et al., Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization, Proc Natl Acad Sci U S A, vol.111, issue.14, pp.5135-5175, 2014.

V. S. Govindarajan, . Capsicum--production, . Technology, . Chemistry, . 3. Quality et al., Crc Critical Reviews in Food Science and Nutrition, vol.24, issue.3, pp.245-355, 1986.

F. Menichini, R. Tundis, M. Bonesi, M. R. Loizzo, F. Conforti et al., The influence of fruit ripening on the phytochemical content and biological activity of Capsicum chinense, Jacq. cv Habanero. Food Chemistry, vol.114, issue.2, pp.553-560, 2009.

S. Kim, M. Park, S. I. Yeom, Y. M. Kim, J. M. Lee et al.,

, Nat Genet, vol.46, issue.3, pp.270-278, 2014.

M. K. Meghvansi, S. Siddiqui, M. H. Khan, V. K. Gupta, M. G. Vairale et al., Naga chilli: A potential source of capsaicinoids with broad-spectrum ethnopharmacological applications, Journal of Ethnopharmacology, vol.132, issue.1, pp.1-14, 2010.

M. Srinivasan, N. Devipriya, K. B. Kalpana, and V. P. Menon, Lycopene: An antioxidant and radioprotector against gammaradiation-induced cellular damages in cultured human lymphocytes, Toxicology, vol.262, issue.1, pp.43-49, 2009.

A. R. Zimmer, B. Leonardi, D. Miron, E. Schapoval, J. R. De-oliveira et al., Antioxidant and anti-inflammatory properties of Capsicum baccatum: From traditional use to scientific approach, Journal of Ethnopharmacology, vol.139, issue.1, pp.228-233, 2012.

A. R. Zimmer, B. Leonardi, E. R. Zimmer, E. Kalinine, D. O. De-souza et al., Long-Term Oral Administration of Capsicum baccatum Extracts Does Not Alter Behavioral, Hematological, and Metabolic Parameters in CF1 Mice, Evid Based Complement Alternat Med, 2012.

K. Ahuja, I. K. Robertson, D. P. Geraghty, and M. J. Ball, The effect of
URL : https://hal.archives-ouvertes.fr/hal-01517447

K. Aizawa and T. Inakuma, Dietary capsanthin, the main carotenoid in paprika (Capsicum annuum), alters plasma highdensity lipoprotein-cholesterol levels and hepatic gene expression in rats, British Journal of Nutrition, vol.102, issue.12, pp.1760-1766, 2009.

L. Galvez-ranilla, Y. Kwon, E. Apostolidis, and K. Shetty, Phenolic compounds, antioxidant activity and in vitro inhibitory potential against key enzymes relevant for hyperglycemia and hypertension of commonly used medicinal plants, herbs and spices in Latin America, Bioresource Technology, vol.101, issue.12, pp.4676-4689, 2010.

Y. Liu and M. G. Nair, Capsaicinoids in the Hottest Pepper Bhut Jolokia and its Antioxidant and Antiinflammatory Activities, Natural Product Communications, vol.5, issue.1, pp.91-94, 2010.

S. K. Sharma, A. S. Vij, and M. Sharma, Mechanisms and clinical uses of capsaicin, Eur J Pharmacol, vol.720, issue.1-3, pp.55-62, 2013.

R. Gomes-von-borowski, R. Zimmer, K. , F. Leonardi, B. et al., Rigon Zimmer A. Red pepper Capsicum baccatum : source of antiadhesive and antibiofilm compounds against nosocomial bacteria, Ind. Crops Prod, vol.127, pp.148-157, 2019.

T. Rocha, P. Vieira, S. Gnoatto, T. Tasca, and G. Gosmann, Anti-Trichomonas vaginalis activity of saponins from Quillaja, Passiflora, and Ilex species, Parasitology Research, vol.110, issue.6, pp.2551-2556, 2012.

F. Waechter, G. Da-silva, J. B. Willig, C. B. De-oliveira, B. D. Vieira et al., Synthesis and Biological Evaluation of Betulinic Acid Derivatives as New Antitumor Agents for Leukemia, Anticancer Agents Med Chem, vol.17, issue.13, pp.1777-1785, 2017.

N. Richy, D. Sarraf, X. Maréchal, N. Janmamode, L. Guével et al., Structure-based design of human immuno-and constitutive proteasomes inhibitors, Eur J Med Chem, vol.145, pp.570-587, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01713510

R. Castillo, A. S. Guihéneuf, S. , L. Guével, R. Biard et al., Synthesis and toxicity evaluation of hydrophobic ionic liquids for volatile organic compounds biodegradation in a two-phase partitioning bioreactor, J Hazard Mater, vol.307, pp.221-251, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01254799

S. Kim, M. Park, S. Yeom, Y. Kim, J. M. Lee et al., Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species, Nature Genetics, vol.46, issue.3, p.270, 2014.

S. C. Lee, I. S. Hwang, H. W. Choi, and B. K. Hwang, Involvement of the pepper antimicrobial protein CaAMP1 gene in broad spectrum disease resistance, Plant Physiology, vol.148, issue.2, pp.1004-1020, 2008.

G. B. Dias, V. M. Gomes, U. Z. Pereira, S. F. Ferreira-ribeiro, A. O. Carvalho et al., Perales J and others. Isolation, Characterization and Antifungal Activity of Proteinase Inhibitors from Capsicum chinense Jacq, Seeds. Protein Journal, vol.32, issue.1, pp.15-26, 2013.

J. Lourtet-hascoët, A. Bicart-see, M. P. Félicé, G. Giordano, and E. Bonnet, Staphylococcus lugdunensis, a serious pathogen in periprosthetic joint infections: comparison to Staphylococcus aureus and Staphylococcus epidermidis, Int J Infect Dis, vol.51, pp.56-61, 2016.

M. Widerström, Significance of Staphylococcus epidermidis in Health Care-Associated Infections, from Contaminant to Clinically Relevant Pathogen: This Is a Wake-Up Call!, J Clin Microbiol, vol.54, issue.7, pp.1679-1681, 2016.

E. M. Gabriel, S. Fitzgibbon, C. J. Coffey, A. O'mahony, and J. M. , Characterisation of clinical meticillin-resistant Staphylococcus epidermidis demonstrating high levels of linezolid resistance (>256 ?g/ml) resulting from transmissible and mutational mechanisms, J Infect Chemother, vol.21, issue.7, pp.547-556, 2015.

M. S. Castro and W. Fontes, Plant defense and antimicrobial peptides, Protein and Peptide Letters, vol.12, issue.1, pp.13-18, 2005.

F. Silva, M. De-sousa-oliveira, J. M. De-souza, P. Martins, M. C. Pestana-calsa et al., Plant Proteomics and Peptidomics in Host-Pathogen Interactions: The Weapons Used by Each Side, Curr Protein Pept Sci, vol.18, issue.4, pp.400-410, 2017.

J. De-vries, J. B. Evers, and E. H. Poelman, Dynamic Plant-Plant-Herbivore Interactions Govern Plant Growth-Defence Integration, Trends Plant Sci, vol.22, issue.4, pp.329-337, 2017.

Y. M. Lee, H. S. Wee, I. P. Ahn, Y. H. Lee, and C. S. An, Molecular characterization of a cDNA for a cysteine-rich antifungal protein from Capsicum annuum, Journal of Plant Biology, vol.47, issue.4, pp.375-382, 2004.

C. Lengsfeld, F. Titgemeyer, G. Faller, and A. Hensel, Glycosylated compounds from okra inhibit adhesion of Helicobacter pylori to human gastric mucosa, Journal of Agricultural and Food Chemistry, vol.52, issue.6, pp.1495-1503, 2004.

N. Wittschier, C. Lengsfeld, S. Vorthems, U. Stratmann, J. F. Ernst et al., Large molecules as anti-adhesive compounds against pathogens, Journal of Pharmacy and Pharmacology, vol.59, issue.6, pp.777-786, 2007.

, ARTICLE J. Name, vol.00, pp.1-3, 2013.

K. Bensch, J. Tiralongo, K. Schmidt, M. A. Bone, K. M. Lehmann et al., Investigations into the antiadhesive activity of herbal extracts against Campylobacter jejuni, Phytother Res, vol.25, issue.8, pp.1125-1157, 2011.

V. Borowski, R. G. Macedo, A. J. Gnoatto, and S. , Peptides as a strategy against biofilm-forming microorganisms: Structureactivity relationship perspectives, Eur J Pharm Sci, vol.114, pp.114-137, 2017.

R. Gomes-von-borowski, S. Gnoatto, A. J. Macedo, and R. Gillet, Promising Antibiofilm Activity of Peptidomimetics. Front Microbiol, vol.9, p.2157, 2018.

G. Batoni, G. Maisetta, and S. Esin, Antimicrobial peptides and their interaction with biofilms of medically relevant bacteria, Biochimica Et Biophysica Acta-Biomembranes, vol.1858, issue.5, pp.1044-1060, 2016.

C. De-la-fuente-nunez, F. Reffuveille, S. C. Mansour, S. L. Reckseidler-zenteno, D. Hernandez et al., Enantiomeric Peptides that Eradicate Wild-Type and Multidrug-Resistant Biofilms and Protect against Lethal Pseudomonas aeruginosa Infections, vol.22, pp.1280-1282, 2015.

A. Pfalzgraff, K. Brandenburg, and G. Weindl, Antimicrobial Peptides and Their Therapeutic Potential for Bacterial Skin Infections and Wounds, Front Pharmacol, vol.9, p.281, 2018.

P. R. Shewry, J. A. Napier, and A. S. Tatham, SEED STORAGE PROTEINS -STRUCTURES AND BIOSYNTHESIS, Plant Cell, vol.7, issue.7, pp.945-956, 1995.

M. Dostert, C. R. Belanger, and R. Hancock, Design and Assessment of Anti-Biofilm Peptides: Steps Toward Clinical Application, J Innate Immun, vol.2018, pp.1-12

H. Sun, L. Lv, Y. Bai, H. Yang, H. Zhou et al., Nanotechnology-enabled materials for hemostatic and antiinfection treatments in orthopedic surgery, Int J Nanomedicine, vol.13, pp.8325-8338, 2018.

J. R. Brannon and M. Hadjifrangiskou, The arsenal of pathogens and antivirulence therapeutic strategies for disarming them, Drug Des Devel Ther, vol.10, pp.1795-806, 2016.

M. Totsika, Disarming pathogens: benefits and challenges of antimicrobials that target bacterial virulence instead of growth and viability, Future Med Chem, vol.9, issue.3, pp.267-269, 2017.

L. N. Silva, K. R. Zimmer, A. J. Macedo, and D. S. Trentin, Plant Natural Products Targeting Bacterial Virulence Factors, Chem Rev, vol.116, issue.16, pp.9162-236, 2016.

A. Nostro, R. Scaffaro, D. 'arrigo, M. Botta, L. Filocamo et al., Study on carvacrol and cinnamaldehyde polymeric films: mechanical properties, release kinetics and antibacterial and antibiofilm activities, Applied Microbiology and Biotechnology, vol.96, issue.4, pp.1029-1038, 2012.

M. Otto, Staphylococcal Infections: Mechanisms of Biofilm Maturation and Detachment as Critical Determinants of Pathogenicity, Annual Review of Medicine, vol.64, pp.175-188, 2013.

S. Atefyekta, M. Pihl, C. Lindsay, S. C. Heilshorn, and M. Andersson, Antibiofilm elastin-like polypeptide coatings: functionality, stability, and selectivity, Acta Biomater, vol.83, pp.245-256, 2019.

N. Strempel, J. Strehmel, and J. Overhage, Potential Application of Antimicrobial Peptides in the Treatment of Bacterial Biofilm Infections, Current Pharmaceutical Design, vol.21, issue.1, pp.67-84, 2015.

, ARTICLE J. Name, vol.00, pp.1-3, 2013.

, B) Hemolysis test with human erythrocytes exposed to CSP at 2 mg/ml, 1% Triton solution (100% of hemolysis), or phosphate buffered saline (PBS) (untreated control as nonhemolytic control). C-E) Dot plots of lymphocytes obtained by flow cytometry. The circled areas highlight the cell populations of interest: C) untreated control, D) cytotoxic control and E) cells exposed to CSP (2.0 mg/ml). (*) Represents a significant difference when compared to reference samples using ANOVA followed by Tukey's post hoc test; p-values <0.05 were considered statistically significant. F) CSP37 cytotoxicity evaluation in representative human cell lines at 25 µM. The number of normal cells is presented as the residual cell percentage (%) compared to the average of the control (DMSO, shown as white). The first three bars, which are black-gray, represent classic cytotoxic controls (roscovitine, doxycycline and Taxol), and the blue bar represents CSP37-exposed cells, Figure 5. Cytotoxicity of natural CSP and synthetic CSP37. A) Human lymphocytes cells after 24 h of exposure to Capsicum storage peptides (CSP) at 2.0 mg/ml, 1% Triton solution