A. Cvekl and X. Zhang, Signaling and Gene Regulatory Networks in Mammalian Lens Development, Trends Genet, vol.33, issue.10, pp.677-702, 2017.

A. Shiels and J. F. Hejtmancik, Mutations and mechanisms in congenital and age-related cataracts, Exp Eye Res, vol.156, pp.95-102, 2017.

A. Foster and C. Gilbert, Cataract in children, Acta Paediatr, vol.92, issue.12, pp.1376-1378, 2003.

P. J. Francis, V. Berry, S. S. Bhattacharya, and A. T. Moore, The genetics of childhood cataract, J Med Genet, vol.37, issue.7, pp.481-488, 2000.

A. Shiels and J. F. Hejtmancik, Molecular Genetics of Cataract, Prog Mol Biol Transl Sci, vol.134, pp.203-218, 2015.

L. M. Nibourg, E. Gelens, R. Kuijer, J. Hooymans, T. G. Van-kooten et al., Prevention of posterior capsular opacification, Exp Eye Res, vol.136, pp.100-115, 2015.

I. M. Wormstone, L. Wang, and C. Liu, Posterior capsule opacification, Exp Eye Res, vol.88, issue.2, pp.257-269, 2009.

, Developmental Dynamics

D. Anand and S. A. Lachke, Systems biology of lens development: A paradigm for disease gene discovery in the eye, Exp Eye Res, vol.156, pp.22-33, 2017.

P. Murphy, M. H. Kabir, and T. Srivastava, Light-focusing human micro-lenses generated from pluripotent stem cells model lens development and drug-induced cataract in vitro, Development, vol.145, issue.1, 2018.

K. Goishi, A. Shimizu, and G. Najarro, AlphaA-crystallin expression prevents gamma-crystallin insolubility and cataract formation in the zebrafish cloche mutant lens, Development, vol.133, issue.13, pp.2585-2593, 2006.

C. Chan and E. , Animal Models of Ophthalmic Diseases, 2016.

M. Huynh, S. J. Zhu, A. Kollara, T. Brown, R. Winklbauer et al., Knockdown of SPARC leads to decreased cell-cell adhesion and lens cataracts during post-gastrula development in Xenopus laevis, Dev Genes Evol, vol.220, pp.315-327, 2011.

G. J. Maher, E. N. Hilton, and J. E. Urquhart, The cataract-associated protein TMEM114, and TMEM235, are glycosylated transmembrane proteins that are distinct from claudin family members, FEBS Lett, vol.585, issue.14, pp.2187-2192, 2011.

T. Pfirrmann, D. Emmerich, and P. Ruokonen, Molecular mechanism of CHRDL1-mediated Xlinked megalocornea in humans and in Xenopus model, Hum Mol Genet, vol.24, issue.11, pp.3119-3132, 2015.

M. Rothe, N. Kanwal, and P. Dietmann, An Epha4/Sipa1l3/Wnt pathway regulates eye development and lens maturation, Development, vol.144, issue.2, pp.321-333, 2017.

A. D. Siddam, C. Gautier-courteille, and L. Perez-campos, The RNA-binding protein Celf1 posttranscriptionally regulates p27Kip1 and Dnase2b to control fiber cell nuclear degradation in lens development, PLoS Genet, vol.14, issue.3, p.1007278, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01773341

D. S. Mcdevitt and S. K. Brahma, Ontogeny and localization of the crystallins during embryonic lens development in Xenopus laevis, J Exp Zool, vol.186, issue.2, pp.127-140, 1973.

G. A. Brunekreef, S. T. Van-genesen, O. H. Destrée, and N. H. Lubsen, Extralenticular expression of Xenopus laevis alpha-, beta-, and gamma-crystallin genes, Invest Ophthalmol Vis Sci, vol.18, issue.13, pp.2764-2771, 1997.

S. Ishibashi and K. Yasuda, Distinct roles of maf genes during Xenopus lens development, Mech Dev, vol.101, issue.1-2, pp.155-166, 2001.

N. Mizuno, M. Mochii, T. C. Takahashi, G. Eguchi, and T. S. Okada, Lens regeneration in Xenopus is not a mere repeat of lens development, with respect to crystallin gene expression, Differentiation, vol.64, issue.3, pp.143-149, 1999.

J. J. Henry and M. B. Elkins, Cornea-lens transdifferentiation in the anuran, Xenopus tropicalis, Dev Genes Evol, vol.211, issue.8-9, pp.377-387, 2001.

J. J. Henry and P. A. Tsonis, Molecular and cellular aspects of amphibian lens regeneration, Prog Retin Eye Res, vol.29, issue.6, pp.543-555, 2010.

M. D. Servetnick, T. L. Cook, and R. M. Grainger, Lens induction in axolotls: comparison with inductive signaling mechanisms in Xenopus laevis, Int J Dev Biol, vol.40, issue.4, pp.755-761, 1996.

M. N. Vergara, G. Tsissios, D. Rio-tsonis, and K. , Lens regeneration: a historical perspective, Int J Dev Biol, vol.62, issue.6-7-8, pp.351-361, 2018.

E. L. Malloch, K. J. Perry, and L. Fukui, Gene Expression Profiles of Lens Regeneration and Development in Xenopus laevis, Dev Dyn, vol.238, issue.9, pp.2340-2356, 2009.

H. Ogino, H. Ochi, H. M. Reza, and K. Yasuda, Transcription factors involved in lens development from the preplacodal ectoderm, Dev Biol, vol.363, issue.2, pp.333-347, 2012.

P. V. Rao and R. Maddala, The role of the lens actin cytoskeleton in fiber cell elongation and differentiation, Semin Cell Dev Biol, vol.17, issue.6, pp.698-711, 2006.

M. A. Wride, Lens fibre cell differentiation and organelle loss: many paths lead to clarity, Philos Trans R Soc Lond, B, Biol Sci, vol.366, pp.1219-1233, 1568.

, Wiechmann AF, Wirsig-Wiechmann CR. Color Atlas of Xenopus Laevis Histology, vol.29, 2003.

C. R. Altmann, R. L. Chow, R. A. Lang, and A. Hemmati-brivanlou, Lens induction by Pax-6 in Xenopus laevis, Dev Biol, vol.185, issue.1, pp.119-123, 1997.

R. L. Chow, C. R. Altmann, and R. A. Lang, Hemmati-Brivanlou A. Pax6 induces ectopic eyes in a vertebrate, Development, vol.126, pp.4213-4222, 1999.

G. Halder, P. Callaerts, and W. J. Gehring, Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila, Science, vol.267, issue.5205, pp.1788-1792, 1995.

Y. Onuma, S. Takahashi, M. Asashima, S. Kurata, and W. J. Gehring, Conservation of Pax 6 function and upstream activation by Notch signaling in eye development of frogs and flies, Proc Natl Acad Sci, vol.99, issue.4, pp.2020-2025, 2002.

T. Nakayama, M. Fisher, and K. Nakajima, Xenopus pax6 mutants affect eye development and other organ systems, and have phenotypic similarities to human aniridia patients, Dev Biol, vol.408, issue.2, pp.328-344, 2015.

K. Suzuki, Y. Isoyama, and K. Kashiwagi, High efficiency TALENs enable F0 functional analysis by targeted gene disruption in Xenopus laevis embryos, Biol Open, vol.2, issue.5, pp.448-452, 2013.

A. M. Session, Y. Uno, and T. Kwon, Genome evolution in the allotetraploid frog Xenopus laevis, Nature, vol.538, issue.7625, pp.336-343, 2016.

T. Hsiau, T. Maures, and K. Waite, Inference of CRISPR Edits from Sanger Trace Data. bioRxiv, p.251082, 2018.

A. S. Viczian and M. E. Zuber, A simple behavioral assay for testing visual function in Xenopus laevis, J Vis Exp, issue.88, 2014.

R. Huettl, S. Eckstein, and T. Stahl, Functional dissection of the Pax6 paired domain: Roles in neural tube patterning and peripheral nervous system development, Developmental Dynamics, vol.39, issue.1, pp.86-103, 2016.

A. Shiels, D. Mackay, A. Ionides, V. Berry, A. Moore et al., A missense mutation in the human connexin50 gene (GJA8) underlies autosomal dominant "zonular pulverulent" cataract, on chromosome 1q, Am J Hum Genet, vol.62, issue.3, pp.526-532, 1998.

J. Yi, J. Yun, Z. Li, C. Xu, and B. Pan, Epidemiology and molecular genetics of congenital cataracts, Int J Ophthalmol, vol.4, issue.4, pp.422-432, 2011.

X. Yu, X. Ping, and X. Zhang, The impact of GJA8 SNPs on susceptibility to age-related cataract, Hum Genet, vol.137, pp.897-904, 2018.

P. Rong, X. Wang, and I. Niesman, Disruption of Gja8 (alpha8 connexin) in mice leads to microphthalmia associated with retardation of lens growth and lens fiber maturation, Development, vol.129, issue.1, pp.167-174, 2002.

T. W. White, D. A. Goodenough, and D. L. Paul, Targeted ablation of connexin50 in mice results in microphthalmia and zonular pulverulent cataracts, J Cell Biol, vol.143, issue.3, pp.815-825, 1998.

L. Yuan, T. Sui, and M. Chen, CRISPR/Cas9-mediated GJA8 knockout in rabbits recapitulates human congenital cataracts, Sci Rep, vol.6, p.22024, 2016.

S. Nishimoto, K. Kawane, and R. Watanabe-fukunaga, Nuclear cataract caused by a lack of DNA degradation in the mouse eye lens, Nature, vol.424, issue.6952, pp.1071-1074, 2003.

O. Jara, P. J. Minogue, V. M. Berthoud, and E. C. Beyer, Chemical chaperone treatment improves levels and distributions of connexins in Cx50D47A mouse lenses, Exp Eye Res, vol.175, pp.192-198, 2018.

R. Gioia, F. Tonelli, and I. Ceppi, The chaperone activity of 4PBA ameliorates the skeletal phenotype of Chihuahua, a zebrafish model for dominant osteogenesis imperfecta, Hum Mol Genet, vol.26, issue.15, pp.2897-2911, 2017.

L. N. Makley, K. A. Mcmenimen, and B. T. Devree, Pharmacological chaperone for ?-crystallin partially restores transparency in cataract models, Developmental Dynamics, vol.49, issue.6261, pp.674-677, 2015.

L. Zhao, X. Chen, and J. Zhu, Lanosterol reverses protein aggregation in cataracts, Nature, vol.523, issue.7562, pp.607-611, 2015.

D. Anand, A. Kakrana, A. D. Siddam, H. Huang, I. Saadi et al., RNA sequencing-based transcriptomic profiles of embryonic lens development for cataract gene discovery, Hum Genet, vol.137, pp.941-954, 2018.

A. Kakrana, A. Yang, and D. Anand, iSyTE 2.0: a database for expression-based gene discovery in the eye, Nucleic Acids Res, vol.46, issue.D1, pp.875-885, 2018.

S. A. Lachke, J. Ho, and G. V. Kryukov, iSyTE: integrated Systems Tool for Eye gene discovery, Invest Ophthalmol Vis Sci, vol.53, issue.3, pp.1617-1627, 2012.

S. Aryal, D. Anand, and F. G. Hernandez, MS/MS in silico subtraction-based proteomic profiling as an approach to facilitate disease gene discovery: application to lens development and cataract, Hum Genet, 2019.

S. Dash, L. K. Brastrom, S. D. Patel, C. A. Scott, D. C. Slusarski et al., The master transcription factor SOX2, mutated in anophthalmia/microphthalmia, is post-transcriptionally regulated by the conserved RNA-binding protein RBM24 in vertebrate eye development, Hum Mol Genet, 2019.

T. Nakayama, I. L. Blitz, and M. B. Fish, Cas9-based genome editing in Xenopus tropicalis, Meth Enzymol, vol.546, pp.355-375, 2014.

K. Labun, T. G. Montague, J. A. Gagnon, S. B. Thyme, and E. Valen, CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering, Nucleic Acids Res, vol.44, issue.W1, pp.272-276, 2016.

, Normal Table of Xenopus Laevis (Daudin): A Systematical and Chronological Survey of the Development from the Fertilized Egg till the End of Metamorphosis, Developmental Dynamics, vol.58, 1994.

, Zebrafish embryos at the end of pronuclear fusion and before initiation of zygotic mitosis are resistant to teratogenic effects of heat

, The teratogenic heat resilient window exists transiently during the maternally controlled phase of development

, Heat shock during the teratogenic heat resilient window enables generation of morphologically normal zebrafish tetraploids

, Diploidization of haploids by transient heat shocks during the teratogenic heat resilient windows aids in effective generation of gynogenic diploids

, Wellcome Trust Department of Biotechnology India Alliance (Intermediate Fellowship to Sreelaja Nair), Grant Number 13X301

, Grant Number 12P0127

, Zebrafish embryos at the end of pronuclear fusion and before initiation of zygotic mitosis are resistant to teratogenic effects of heat

, The teratogenic heat resilient window exists transiently during the maternally controlled phase of development

, Heat shock during the teratogenic heat resilient window enables generation of morphologically normal zebrafish tetraploids

, Diploidization of haploids by transient heat shocks during the teratogenic heat resilient windows aids in effective generation of gynogenic diploids

, Wellcome Trust Department of Biotechnology India Alliance (Intermediate Fellowship to Sreelaja Nair), Grant Number 13X301

, Grant Number 12P0127

, Zebrafish embryos at the end of pronuclear fusion and before initiation of zygotic mitosis are resistant to teratogenic effects of heat

, The teratogenic heat resilient window exists transiently during the maternally controlled phase of development

, Heat shock during the teratogenic heat resilient window enables generation of morphologically normal zebrafish tetraploids

, Diploidization of haploids by transient heat shocks during the teratogenic heat resilient windows aids in effective generation of gynogenic diploids

, Wellcome Trust Department of Biotechnology India Alliance (Intermediate Fellowship to Sreelaja Nair), Grant Number 13X301

, Grant Number 12P0127

, Zebrafish embryos at the end of pronuclear fusion and before initiation of zygotic mitosis are resistant to teratogenic effects of heat

, The teratogenic heat resilient window exists transiently during the maternally controlled phase of development

, Heat shock during the teratogenic heat resilient window enables generation of morphologically normal zebrafish tetraploids

, Diploidization of haploids by transient heat shocks during the teratogenic heat resilient windows aids in effective generation of gynogenic diploids

, Wellcome Trust Department of Biotechnology India Alliance (Intermediate Fellowship to Sreelaja Nair), Grant Number 13X301

, Grant Number 12P0127

, Zebrafish embryos at the end of pronuclear fusion and before initiation of zygotic mitosis are resistant to teratogenic effects of heat

, The teratogenic heat resilient window exists transiently during the maternally controlled phase of development

, Heat shock during the teratogenic heat resilient window enables generation of morphologically normal zebrafish tetraploids

, Diploidization of haploids by transient heat shocks during the teratogenic heat resilient windows aids in effective generation of gynogenic diploids

, Wellcome Trust Department of Biotechnology India Alliance (Intermediate Fellowship to Sreelaja Nair), Grant Number 13X301

, Grant Number 12P0127