Mineralization enhancement of pharmaceutical contaminants by radical-based oxidation promoted by oxide-bound metal ions

Mahamadou Kamagate¹,², Mathieu Pasturel³, Marcello Brigante⁴, Khalil Hanna*¹,⁵

¹Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, UMR CNRS 6226, 11 Allée de Beaulieu, F-35708 Rennes Cedex 7, France.
²Université de Man, BP 20 Man, Côte d’Ivoire.
³Univ Rennes, Université de Rennes 1, UMR CNRS 6226, Avenue General Leclerc, F-35708 Rennes Cedex 7, France.
⁴Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont–Ferrand, France.
⁵Institut Universitaire de France (IUF), MESRI, 1 rue Descartes, 75231 Paris Cedex.

*Corresponding author: khalil.hanna@ensc-rennes.fr / +33 2 23 23 80 27

Revised manuscript to Environmental Science & Technology
December, 2019
Abstract

While the use of transition metal oxides in catalyzing advanced oxidation reactions has been widely investigated, very few reports have focused on how the preliminary contact of oxides with target compounds may affect the succession of reaction. In this study, we examined the adsorption and electron transfer reactions of two fluoroquinolones, flumequine (FLU) and norfloxacin (NOR), with goethite (α-FeOOH) or manganese (Mn) oxide, and their impact on the subsequent mineralization of target compounds using H₂O₂ or S₂O₈²⁻ under UVA irradiation. Intriguingly, higher total organic carbon (TOC) removal was achieved when antibiotics and metal-oxides were allowed for pre-equilibration before starting the oxidation reaction. The rate and extent of TOC removal is strongly dependent on the molecule structure and the redox-active mineral used, and much less on the pre-equilibration time. This high efficiency can be ascribed to the presence of reduced metal ions, chemically or photochemically generated during the first stage, onto oxide minerals. Oxide-bound Mn⁰ plays a crucial role in catalyzing oxidant decomposition and then producing greater amounts of radical species through a photo-assisted redox cycle, regardless of the underlying surface, Mn⁴O₂ or Mn³OOH. This finding will be of fundamental and practical significance to Mn-based oxidation reactions and wastewater treatment processes.
1. Introduction

Fe- and Mn- oxyhydroxides, commonly found in the Earth’s near-surface environment, are generally the dominant sorbents and redox-active compounds in the environment. Interactions of these oxides with organic compounds may involve the adsorption associated or not with a heterogeneous redox reaction. The latter, which is typically attributed to sequential one electron-transfer reactions, results in reductive dissolution of the oxide into reduced ions (e.g. FeII or MnII) and oxidative transformation of the molecule into oxidized products. These interactions are mainly affected by solution pH, oxide surface properties, and structural characteristics of target compound.

The heterogeneous electron transfer reactions are generally studied in the context of characterization of affected environments, as the fate of organic contaminants is often tied to their affinities to surfaces of soil and sediment mineral particles. Some reports contend that these reactions can also be applied in water and wastewater treatment technologies, even though there is no total effective destruction of target contaminants. Indeed, one electron-transfer reactions with Mn- or Fe-oxides produce a suite of products, including ring-cleavage products or dehalogenated products. Although they could modify the contaminant structure, they are not able to achieve total mineralization, i.e., their complete conversion to CO$_2$ and/or inorganic ions. The latter may be achieved by advanced oxidation processes which are a set of techniques based on the catalytic decomposition of oxidants, hydrogen peroxide (H$_2$O$_2$) or persulfate (S$_2$O$_8^{2-}$), and then the formation of strongly reactive transient species such as the hydroxyl radical, *OH (2.8 V), or the sulfate radical, SO$_4^{\bullet-}$ (2.5-3.1 V).

In this work, we examined, for the first time, how the electron transfer reactions between organic contaminants and redox-active minerals can determine the subsequent total removal or mineralization of target compounds. For this purpose, we first studied the reaction (i.e.,
adsorption and/or heterogeneous redox reactions) of two kinds of fluoroquinolone antibiotics with goethite (α-FeOOH) and manganese oxide (MnO₂), which are the most common redox-active minerals in terrestrial and marine environments. The formation of byproducts and reduced metal ions during the first stage of reaction was also monitored. Flumequine (FLU) and norfloxacin (NOR) were selected because of their growing use in human and veterinary medicine and continuous release into the environment, resulting in their large presence in surface waters, groundwaters and sediments at concentrations levels ranging from ng to µg per L ¹⁹-²⁰. Fluoroquinolones such as NOR are electron donor–acceptor compounds with the piperazinyl group serving as the electron donor and 4-oxoquinoline-3-carboxylic acid as the electron acceptor in the neutral and zwitterion forms.

The catalytic decomposition of H₂O₂ or Na₂S₂O₈ and degradation/mineralization of target compounds were then investigated in presence of MnO₂ or α-FeOOH, under dark and UVA irradiation. We also evaluated the impact of pre-equilibration time (i.e., first contact between molecules and oxides) on the mineralization of compounds through hydroxyl/sulfate radical -based oxidation processes. Radical scavengers and Laser Flash Photolysis (LFP) experiments were performed to assess the involved radical species and their reactivity with generated byproducts. To assess the contribution of Mn⁴⁺ and Mn³⁺ in the overall reaction, Mn-oxides with lower valence states as in manganite (γ-Mn³⁺OOH) were investigated, and the role played by mineral-bound Mn²⁺ on the heterogeneous oxidation process was discussed.
2. Materials and methods

2.1. Chemicals

All chemicals were of pro-analytical quality or better and purchased from Sigma-Aldrich, France. FLU (purity > 99%) and NOR (purity > 98%) stock solutions were prepared separately by dissolving 20 mg of both chemicals in 0.5 mL of 1 M NaOH, then diluted to 1 L with ultrapure water. Hydrogen peroxide (H$_2$O$_2$, 35% w/w) and sodium persulfate (PS) (Na$_2$S$_2$O$_8$ > 99.5% purity) were also provided by Sigma-Aldrich. Sulfuric acid, Sodium hydroxide, Manganese (II) nitrate tetrahydrate (Mn(NO$_3$)$_2$.4H$_2$O), 2-propanol (2-Pr, C$_3$H$_8$O), t-butanol (t-but, C$_4$H$_{10}$O) were obtained from Sigma–Aldrich. Solutions were prepared with high-purity water obtained from a Millipore Milli-Q system.

Goethite (α-FeOOH), manganite (γ-MnOOH) and manganese oxide (MnO$_2$) particles were synthesized as described in previous studies $^{21-23}$. The nature of goethite and manganite was confirmed by X-ray diffraction (XRD) (Fig. S1). The diffractogram of manganese oxide corresponds to that of pyrolusite (Fig S1). The B.E.T. specific surface area of α-FeOOH, γ-MnOOH and MnO$_2$ were 85 ± 1, 64 ± 1 and 371 ± 5 m2 g$^{-1}$, respectively. The point of zero charge (PZC) determined from potentiometric titration of MnO$_2$ and MnOOH were 2.4 and 6.3, respectively, whereas that of goethite was 9.1. Mn average oxidation state (AOS) of pyrolusite was measured by a back-titration method using a KMnO$_4$ standard solution. 24 AOS of the MnO$_2$ used in this study was determined as 3.95.

2.2. Adsorption, redox and Laser Flash Photolysis experiments

Solubility experiments were conducted by suspending separately FLU and NOR powders (~4-6 mg) in 10 mL water solution containing NaCl (10 mM) as a function of pH. The suspensions were equilibrated for 24 h, thereafter the supernatants were filtered (0.2 μm). Then, FLU and NOR concentrations were measured by high-performance liquid
chromatography (HPLC, Waters 600 controller with a C18 column (250 mm×4.6 mm i.d., 5 μm). Solubility is relatively low at acidic pH for FLU (~80 µM) and between pH 7 and 8 for NOR (~1200 µM) (Fig. S2).

Adsorption and redox kinetics were then evaluated at pH = 6.5 ± 0.1, NaCl concentration = 10 mM, NOR initial concentration = 24 µM, FLU initial concentration = 24 µM with α-FeOOH and MnO₂ concentration = 10 m² L⁻¹. All batch experiments were performed under an atmosphere of N₂ (g) to purge dissolved CO₂ from the aqueous solutions. Because the adsorption of target compounds is negligible at pH higher than 10 (according to preliminary adsorption tests), desorption tests were conducted at pH = 11 as a means to check the mass balance. Amount of Mn⁺⁺ released in the reaction solution was monitored by Atomic Absorption Spectrometer (Varian AA 140). Possible generation of dissolved ferrous ion was assessed by UV-visible spectrophotometry (Cary 50 probe, Varian) using the 1-10 phenanthroline method.

Aqueous concentrations of NOR and FLU were determined using a Waters 600 controller high performance liquid chromatography (HPLC) system equipped with an autosampler (Waters 717 plus), a C18 column (250 mm×4.6 mm i.d., 5 µm) and a UV detector (246 nm for FLU or 277 nm for NOR, Waters 2489). The mobile phase was a mixture of water/acetonitrile (60:40 v/v) containing 0.1 % of formic acid. The flow rate of the mobile phase was set at 1 mL min⁻¹ in an isocratic mode. Under these conditions, the retention times of FLU and NOR were 6.5 and 7.5 min, respectively.

Oxidation by-products were analyzed with a water ultrapure HPLC-MS/MS (Acquity UPLC) system, equipped with a BEH C18 column (100 mm x 2.1mm, 1.7µm). The mobile phase consisted of acetonitrile containing 0.1 % of formic acid (eluant A) and mixture acetonitrile/water (i.e., 10 % / 90 %) containing 0.1 % of formic acid (eluant B) with gradient 0 min / 0 % A – 1 min/0 % A – 9 min/100 % A – 12 min / 0 % A and a flow rate equal to 400
μL min⁻¹. An electrospray ionization (ESI) was used for the MS measurements in positive ionization mode and full scan acquisition.

The reactivity of NOR or FLU and their byproducts with radical species was monitored using a Laser Flash Photolysis apparatus (LFP), following previously reported procedure.²⁵ Briefly, a laser flash photolysis system using 266 nm excitation wavelength (pulse energy of 45 mJ) is used to generate hydroxyl and sulfate radical from H₂O₂ and PS solutions in the presence of different concentrations of fluoroquinolone. Aliquots of chemical solutions (FLU, NOR, S₂O₈²⁻, H₂O₂, etc.) were mixed just before each LFP experiment to obtain the desired concentrations. Reactivity of FLU with hydroxyl radical was determined by using chemical competition kinetics with thiocyanate anion (SCN⁻) and consequent formation of di-thiocyanate radical anion (SCN₂•⁻) detected at 470 nm. Absorption of SCN₂•⁻ transient was correlated to the competitive reactivity between •OH and fluoroquinolones in solution to obtain the second order rate constant. ²⁵ The second-order rate constant for the reactivity between SO₄•⁻ and NOR or FLU, was determined from the slope of the linear correlation between the first-order decay constant of the radical, determined from the regression lines of the logarithmic decays of SO₄•⁻ signal monitored at 450 nm, and the initial concentration of fluoroquinolone. Each error was obtained from the scattering of the experimental data from the fitting line. The constant was reported as L mgC⁻¹ s⁻¹ after determination of carbon concentration (mgC L⁻¹) using TOC analyser of each sample. Experiments were performed at pH 3 and 9 for FLU (pKa 6.3) and at pH 3.5, 7.5 and 11 for NOR (pKa 6.2 and 8.5) in order to determine the reactivity of neutral and deprotonated forms, which coexist at pH 6.5.

2.3. UVA irradiation experiments

A photoreactor (made of borosilicate glass) of 500 mL capacity was used to perform all experiments at pH 6.5 ± 0.1. The tubular reactor, 34 cm high and 3.8 cm in diameter, was designed. This setup has an enclosed chamber comprising this reactor; an UVA lamp 24 W
(Philips PL-L) placed in the center of the glass cell emitting in a wavelength region 320-400 nm with the emission peak centered at \(\lambda_{\text{max}} = 360 \) nm, yielding a irradiation intensity of 16 mW cm\(^{-2}\) quantified with an UVA Radiometer (VLX- 3W equipped with a sensor CX 365, ALYS Technologies, Switzerland). The solution with catalysts was continuously stirred with a magnetic bar at 180 rpm. The pH of the sample solution was measured with a VWR instruments 6000 pH-meter. Monitoring of suspension temperature indicated no significant fluctuation (20 ± 2 °C) along the experiment.

Two different experiments were conducted at room temperature. In the first series of experiments, FLU or NOR, oxidants (H\(_2\)O\(_2\) or S\(_2\)O\(_8^{2-}\)) and oxides (\(\alpha\)-FeOOH or MnO\(_2\)) were mixed simultaneously few minutes before UVA irradiation. In the second experimental series, suspensions containing antibiotics and goethite or manganese oxide were stirred in the dark for a certain time (1, 24, or 48 h) before adding oxidant and/or starting UVA irradiation.

In both experiments, 0.059 g of goethite or 0.0135 g of MnO\(_2\) were added to 500 mL of contaminant solution and the pH was kept constant (6.5 ± 0.1) using NaOH or H\(_2\)SO\(_4\). At each time interval, an aliquot of solution was collected to determine the aqueous concentration of FLU or NOR by HPLC/UV. Total Organic Carbon (TOC) was determined using a TOC-meter (Shimadzu TOC-VCSH). All experiments were conducted in triplicates and showed a good reproducibility within 5 % of relative standard deviation.

Results and discussion

3.1. Assessment of adsorption and electron transfer reactions on mineral surfaces

Sorption kinetics of FLU onto 10 m\(^2\) L\(^{-1}\) of oxide (\(\alpha\)-FeOOH or MnO\(_2\)) with 10 mM NaCl at pH = 6.5 ± 0.1 conducted over a 6-day period showed that a steady-state was achieved within approximately 20 h of reaction time (Fig. S3). Mass balance showed that FLU was removed only by adsorption (i.e., ~ 40 % of FLU was sorbed onto 10 m\(^2\) L\(^{-1}\) of \(\alpha\)-
FeOOH or MnO$_2$, respectively), and that transformation by oxidation did not occur under the experimental conditions of this study. As widely reported for organic ligands, adsorption kinetics onto mineral surfaces could be described according to the pseudo-first-order equation. The pseudo-first-order apparent rate constant k_{app} (min$^{-1}$) obtained by linear regression of $-\ln([\text{FLU}]_{aq}/[\text{FLU}]_0)$ versus time were found close for α-FeOOH (0.15 min$^{-1}$) and MnO$_2$ (0.17 min$^{-1}$).

Both adsorption and oxidation appear to be involved in the removal of NOR in presence of α-FeOOH or MnO$_2$ (See [NOR]$_{tot}$ and [NOR]$_{aq}$ in Fig. S3), which is in agreement with previous works $^6,^{26}$. This oxidation reaction was more pronounced for MnO$_2$ likely due to its higher redox potential, i.e., MnIII/MnII being more electron acceptor than FeIII/FeII 3: 5:

$$Fe^{III}OOH(s) + 3H^+ + e^- \rightarrow Fe^{2+}_{(aq)} + 2H_2O \quad E^\circ = +0.67V \quad (1)$$

$$Mn^{III}OOH(s) + 3H^+ + e^- \rightarrow Mn^{2+}_{(aq)} + 2H_2O \quad E^\circ = +1.50V \quad (2)$$

$$Mn^{IV}O_2(s) + 4H^+ + 2e^- \rightarrow Mn^{2+}_{(aq)} + 2H_2O \quad E^\circ = +1.23V \quad (3)$$

The disappearance kinetics of compounds undergoing adsorption/transformation process on metal oxides cannot be described by simple equations that include classical exponential functions (e.g., pseudo-first order model). Instead, we calculated an initial rate constant (k_{in} in min$^{-1}$) over the first stage of reaction (i.e., 60 min) by plotting a linear regression of $-\ln([\text{NOR}]_{aq}/[\text{NOR}]_0)$ versus time, and we found 0.19 min$^{-1}$ for α-FeOOH and 0.32 min$^{-1}$ for MnO$_2$. This behavior has been attributed to the complexity of involved reactions including formation of precursor complex, dissolution of reduced metal, accumulation of reaction products and/or a gradual change of the reactivity of surface sites.

In MnO$_2$/NOR system, an increase in dissolved MnII concentration was observed over time, confirming that NOR has been oxidized by MnO$_2$ under dark conditions (Fig. 1).

However, the measured amount does not correspond to the stoichiometric amount with
respect to the NOR degradation, most likely due to strong adsorption of MnII ions to MnO\textsubscript{2} surfaces at pH 6.5 (see below for more details). In case of goethite, dissolved FeII ion was below detection limit (i.e. 0.2 µM), probably because of the low amount of generated FeII (low oxidation extent, Fig. S3), and strong binding of FeII to FeOOH surfaces at pH 6.5 and subsequent oxidation of adsorbed FeII10. Unlike FLU, NOR binding is followed by an electron transfer process resulting in the concomitant oxidation of NOR and reduction of surface-bound metal. In case of MnO\textsubscript{2}, one electron is transferred from ligand to the surface-bound MnIV to yield radical intermediate and MnIII that can be further reduced to give MnII. Subsequently, the formed radical intermediate (NOR°) may undergo several different reaction pathways to yield a range of byproducts as follows:

\[
\equiv\text{Mn}^\text{IV} + \text{NOR} \rightarrow \equiv\text{Mn}^\text{IV} - \text{NOR}_{\text{ad}} \rightarrow \equiv\text{Mn}^\text{III}/\text{Mn}^\text{II} - \text{NOR}^* \rightarrow \text{Mn}^\text{II} + \text{NOR}_{\text{ox}} \tag{4}
\]

Although both FLU and NOR may form similar surface complexes with metal surfaces (i.e. metal-bonded complexes with surface sites and/or directly hydrogen-bonded complexes with surface hydroxo groups)10,21,27, oxidative transformation was only observed for NOR. Since FLU does not contain a piperazine ring, we may suppose that the piperazine moiety, the electron donor group, should play a critical role in the molecular transformation with FeOOH or MnO\textsubscript{2}. This phenomenon has been proposed in previous work6 to explain why four fluoroquinolones all containing a piperazine moiety exhibited a very similar oxidation rate. The nature of primary oxidation byproducts identified in the present work as a result of dealkylation and hydroxylation at the piperazine moiety6, further supports this hypothesis. Indeed, two main byproducts were detected by LC/MS/MS analysis conducted on NOR solution reacted with MnO\textsubscript{2} for 22h (Fig. S4). The first (m/z = 251, M – 69) is supposed to form through N-dealkylation of the piperazine ring with a final aniline functional group, while
the second (m/z = 350, M+30) could correspond to C-hydroxylation of the piperazine moiety,
with two additional >C=O groups in the M + 30 product (Fig. S4).

3.2. Assessment of radical-based oxidation in presence of H$_2$O$_2$ or PS under UVA
irradiation

The addition of oxidant to the initial suspension allowed much better removal extent in
MnO$_2$ than in goethite after 300 min of reaction time (Figs. S5 & S6). In all experiments, the
direct photolysis of two pollutants is less than 10 % and the degradation resulting from
photochemical activation of oxidants less than 20 % (Figs. S5 & S6). The removal resulting
upon irradiation of solids (i.e. oxide/UV systems) is depended on the oxide surface and
molecule. For NOR, 90 % with MnO$_2$ and 20% with goethite were observed (Figs. S6), which
are similar to those observed under dark conditions (i.e. through sorption and heterogeneous
redox reactions, Fig. S3), ruling out additional contribution of light. For FLU, almost 30 % of
FLU removal was observed for both solids under UVA irradiation (Fig. S5), which
corresponds to the sorption reaction (Fig. S3), confirming that contribution of ligand to metal
charge transfer is small to negligible under our experimental conditions.

MnO$_2$ exhibited more efficiency for thermal activation of oxidants (H$_2$O$_2$ or PS) than
goethite, while the combination with UVA showed the best performance (i.e. > 95 % of FLU
or NOR were removed). To account for the adsorption on solids (goethite or MnO$_2$),
desorption tests (adding NaOH to reach pH 11) were carried out and total amounts of FLU or
NOR were plotted against time (Figs. S5 & S6). We also monitored the time-trend of TOC in
oxidation systems. About 30 % of mineralization of NOR was obtained for H$_2$O$_2$/MnO$_2$ and
PS/MnO$_2$ systems, while 16 % and 20 % were achieved for H$_2$O$_2$/goethite and PS/goethite,
respectively (Fig. 2). UVA irradiation allowed more TOC removal, but did not achieve
complete mineralization (Fig. 2 for NOR and Fig.S7 for FLU).
Previous works reported that superoxide radical (O$_2^\bullet^-$) is the dominant reactive species generated in the thermal catalyzed decomposition of H$_2$O$_2$ by MnO$_2$ at neutral pH, and at high concentration of H$_2$O$_2$ (i.e. > 7.5 mM)14,28. In the case of MnO$_2$-catalyzed activation of PS, several works showed that the Mn(IV)-oxides catalytically decompose PS into sulfate radicals (SO$_4^\bullet^-$) and hydroxyl radicals (\OH) $^9,29-30$. However, a recent work has identified singlet oxygen (^1O$_2$) as the primary species during PS activation by pyrolusite (β-MnO$_2$), which can be generated by direct oxidation or recombination of superoxide ions and radicals from a metastable manganese intermediate at neutral pH 31. In the present work and under UVA irradiation, insights into degradation pathways with minerals + oxidants + UVA could be obtained by studying the effects of 2-propanol (2-Pr) and tert-butyl alcohol (t-but), because of their different selectivity (i.e., second-order rate constants) with hydroxyl and sulfate radicals.

2-Pr reacts with both \OH and SO$_4^\bullet^-$, with the second-order reaction constant $k_{H\OH \cdot 2-Pr}$ = 1.9×10^9 M$^{-1}$ s$^{-1}$ and $k_{SO_4^\bullet^-,2-Pr}$ = 4-7.42 10^7 M$^{-1}$ s$^{-1}$) $^{32-33}$, while t-but can be considered to be more selective toward \OH $k_{H\OH \cdot t-but}$ = 6.0 x 10^8 M$^{-1}$ s$^{-1}$) than SO$_4^\bullet^-$ ($k_{SO_4^\bullet^-,t-but}$ = 4-8.4 x 10^5 M$^{-1}$ s$^{-1}$) $^{32-34}$. For an accurate assessment of reactivity with radical species, we have also determined the bimolecular reaction rate constants with \OH and SO$_4^\bullet^-$ at different pH values (Table 1 and Fig. S8). At the working pH (6.5), both protonated and ionized forms of FLU may co-exist (See Fig. S2 for distribution of species vs pH). Radical scavenging experiments were only performed with FLU, because of the fast heterogeneous oxidation reaction of NOR with metal oxides.

According to scavenging experiments, 2-propanol has strongly inhibited the FLU degradation at 0.5 mM of H$_2$O$_2$ (Fig. S9), suggesting that the \OH was by far the dominant reactive species accounting for almost 95 % of degradation. When PS was used instead of H$_2$O$_2$, inhibition observed with t-but used as selective scavenger of \OH compared to 2-Pr suggested that the degradation would prevalently take place upon reaction with SO$_4^\bullet^-$ (Fig. S9, Table S1). From
the data, SO$_4^{2-}$ contribution up to 90% of total FLU degradation can be estimated (Table S1). At pH 6.5, reaction of SO$_4^{2-}$ with HO$^-$ in order to generate $^\bullet$OH must be of less extent, because of the low concentration of HO$^-$ in solution at this pH value and the low reaction rate,

\[k_{HO^- SO_4^{2-}} = 7 \times 10^7 \text{M}^{-1} \text{s}^{-1} \] 29, 35.

Therefore, decomposition of H$_2$O$_2$ or S$_2$O$_8^{2-}$ by FeOOH could proceed through a reaction chain, which lead to the production of radical species 14, 15, 36:

\[\equiv \text{Fe}^{III} + \text{H}_2\text{O}_2 \rightarrow \equiv \text{Fe}^{II} + \text{HO}_2^\bullet / \text{O}_2^\bullet^- + \text{H}^+ \] (5)

\[\equiv \text{Fe}^{III} + \text{O}_2^- \rightarrow \equiv \text{Fe}^{II} + \text{O}_2 \] (6)

\[\equiv \text{Fe}^{II} + \text{H}_2\text{O}_2 \rightarrow \equiv \text{Fe}^{III} + \text{HO}^- + ^\bullet\text{OH} \] (7)

\[\equiv \text{Fe}^{III} + \text{S}_2\text{O}_8^{2-} \rightarrow \equiv \text{Fe}^{II} + \text{S}_2\text{O}_8^- \] (8)

\[\equiv \text{Fe}^{II} + \text{S}_2\text{O}_8^- \rightarrow \equiv \text{Fe}^{III} + \text{SO}_4^{2-} + \text{SO}_4^{2-} \] (9)

Likewise, Mn could also initiate H$_2$O$_2$ or PS decomposition to generate radical species following equations 29, 37, 38, 39:

\[\equiv \text{Mn}^{IV} + \text{H}_2\text{O}_2 \rightarrow \equiv \text{Mn}^{III} + \text{HO}_2^\bullet / \text{O}_2^\bullet^- + \text{H}^+ \] (10)

\[\equiv \text{Mn}^{IV} / \text{Mn}^{III} + \text{O}_2^- \rightarrow \equiv \text{Mn}^{III} / \text{Mn}^{II} + \text{O}_2 \] (11)

\[\equiv \text{Mn}^{III} + \text{H}_2\text{O}_2 \rightarrow \equiv \text{Mn}^{IV} + \text{HO}^- + ^\bullet\text{OH} \] (12)

\[\equiv \text{Mn}^{II} + \text{H}_2\text{O}_2 \rightarrow \equiv \text{Mn}^{III} + \text{HO}^- + ^\bullet\text{OH} \] (13)

\[\equiv \text{Mn}^{IV} + \text{S}_2\text{O}_8^{2-} \rightarrow \equiv \text{Mn}^{III} + \text{S}_2\text{O}_8^- \] (14)

\[\equiv \text{Mn}^{III} + \text{S}_2\text{O}_8^{2-} \rightarrow \equiv \text{Mn}^{IV} + \text{SO}_4^\bullet^- + \text{SO}_4^{2-} \] (15)

\[\equiv \text{Mn}^{II} + \text{S}_2\text{O}_8^{2-} \rightarrow \equiv \text{Mn}^{III} + \text{SO}_4^\bullet^- + \text{SO}_4^{2-} \] (16)

Because the conduction bands of MnIV(hydr)oxides are at much lower energies than those of the FeIII(hydr)oxides (band gaps in Pyrolusite is 1.0 eV vs 2.5 eV for goethite)40, the photoreductive dissolution of MnIV-oxides is more energetically feasible. However, two one-electron transfer steps or a single two-electron step may be operative during photo-assisted
reduction of MnO$_2$, i.e., MnIV can be photochemically reduced to MnIII with or without further reduction into MnII. Waite et al.,43 have reported that the 365-nm light irradiation MnO$_2$ can produce MnII, while other authors reported that photo-generation of MnIII occurs under 400-nm light irradiation of MnO$_2$, with no further reduction into MnII. Furthermore, creation of photoexcited precursor species, which exhibits more facile electron transfer than occurs thermally, may take place under irradiation.$^{40-45}$

In the present work, MnII aqueous concentration did not exceed 2 µM even after 10h of irradiation of MnO$_2$ suspension in N$_2$ purging solution at pH 6.5, most likely due to strong binding of Mn$^{2+}$ to MnO$_2$ surfaces at pH 6.5. Consistently, environmental concentrations of Mn$^{2+}$ under oxic conditions are found generally very low, particularly in absence of dissolved organic matter.$^{41-43}$

Taken together, these results shows that the greater efficiency achieved under irradiation could be explained by the higher production of active species, i.e., hydroxyl or sulfate radicals and/or reduced metal ions (Fe (II) or Mn(II))$^{35-37}$. The UVA irradiation may promote the photo-assisted reduction of FeIII to FeII or MnIV to MnIII and/or MnII, which subsequently reacts with H$_2$O$_2$ or S$_2$O$_8^{2-}$ generating •OH or SO$_4^{2-}$.

3.3. Impact of pre-equilibration time on the mineralization extent

As total mineralization is not achieved by UVA and oxidants (H$_2$O$_2$ or PS), we examine here the implications of the one-electron transfer reaction in enhancing the elimination of target compounds by hydroxyl/sulfate radical-based technology. For this purpose, we investigated the impact of pre-equilibration time between antibiotics and metal-oxides on the mineralization extent.
When oxidants and solids were simultaneously added to FLU solution under UVA irradiation (i.e., without pre-equilibration), the mineralization extent increased progressively and achieved a steady-state after 32 h of reaction time (Fig. S7). An equilibration of solid with FLU for 24 h before oxidant addition and UVA irradiation did not affect the mineralization extent (Fig. S10). Note that only adsorption occurs during the pre-equilibration period (solid + FLU) according to the mass balance. In both cases, the highest mineralization extent was found for the UVA/MnO$_2$ system whatever the used oxidant.

When NOR and solids are allowed for equilibration in aqueous solution over 24 h before adding the oxidant, the mineralization extent increased from 0 to 23, 32, 44 and 52 % for H$_2$O$_2$/Goethite, PS/Goethite, H$_2$O$_2$/MnO$_2$ and PS/MnO$_2$ systems, respectively (Fig. 3). UVA irradiation after the pre-equilibration time allowed higher mineralization extent, but the complete mineralization was only achieved in the PS/UVA/MnO$_2$ system (Fig. 3).

As the electron transfer reaction between NOR and MnO$_2$ was relatively fast, we have repeated the previous experiments but by lowering the pre-equilibration time to 1h (Fig. 4). Similar mineralization extents were obtained in the PS/MnO$_2$ and PS/UVA/MnO$_2$ systems, but within a shorter total time (i.e., 40 h instead of 54 h of total reaction time). On the other hand, longer pre-equilibration time (i.e., 48 h) was tested for goethite since its reaction kinetic with NOR was relatively slow (See Fig. S11). Only a slight improvement in TOC removal (i.e., less than 8%) was observed, suggesting that larger pre-equilibration time does not significantly affect the mineralization extent in the case of goethite.

3.4. Role of oxide-bound MnII in mineralization enhancement

The mineralization improvement takes place only when NOR and the metal oxide are allowed for equilibration before adding the oxidant. The enhancement factor is more important in presence of MnO$_2$ (more redox active), and more particularly when PS was used.
as an oxidant in the second stage. These results can be explained if the reaction products, *i.e.* NOR byproducts and Mn species generating during the first stage, are more reactive than the starting compounds. To assess the reactivity of NOR byproducts with sulfate radicals, Laser Flash Photolysis (LFP) experiments were performed for the mother NOR solution (t=0, called NOR) and those reacted with MnO$_2$ after 1h and 24 h of reaction (called here NOR$_{ox}$). The results showed very similar reactivity constants with sulfate radicals, *i.e.* $k_{(\text{NOR, SO}_4^-)} = 1.7 \times 10^7$ L mgC$^{-1}$ s$^{-1}$ close to the values determined after oxidation by MnO$_2$ (*i.e.*, $k_{(\text{NOR}_{ox}, \text{SO}_4^-)} = 1.6 \times 10^7$ L mgC$^{-1}$ s$^{-1}$) (See Table S2). This result may rule out the hypothesis that the higher mineralization rate results from the greater reactivity of NOR byproducts with radical species.

Reductive dissolution of MnO$_2$ by NOR may lead to generate reduced Mn ions and thus MnII or MnIII-rich MnO$_2$ system. Because of the great tendency for manganese ions to be adsorbed at the oxide surface at the working pH, the exact concentration of Mn$^{2+}$ generated from the redox reaction MnO$_2$/NOR cannot be determined. However, adsorption isotherm determined at pH 6.5 indicated a great affinity of Mn$^{2+}$ to MnO$_2$ with an adsorption capacity lying at ~ 0.1 µmol m$^{-2}$ (Fig. S12). In addition, AOS of Mn in the reacted solid decreased to 3.76, thereby underscoring a partial reduction of MnO$_2$ though no structural modification was observed by XRD (Fig. S13). Only UVA irradiation seems to induce oxygen depletion in the pyrolusite structure, yet no visible structural change can be determined (Table S3, Fig. S13). This is in agreement with previous works which showed a great stability (low solubility) of pyrolusite under well-oxidized conditions.$^{46-47}$

To assess the contribution of MnII in the advanced oxidation reaction (*i.e.* the second stage), we added Mn$^{2+}$ (24 µM to be equivalent to the stoichiometric amount of NOR) in MnO$_2$ suspension before adding NOR and starting the oxidation reaction (Fig. S14). The
results showed a complete mineralization of NOR after 60 h of reaction, while increasing of MnII concentration to 48 µM led to a complete mineralization within a shorter time (i.e., 44 h instead of 60 h) (Fig. S14). Therefore, complete NOR mineralization could be achieved either by performing a pre-equilibration stage between NOR and MnO\textsubscript{2} or by adding MnII to the MnO\textsubscript{2} suspension. It is worth noting that MnII ions in homogeneous solution are not active for PS activation and NOR degradation (Fig. S15), and the mineralization is only achieved when MnII was added to MnO\textsubscript{2} suspension. As it is generally reported for FeII, this higher reactivity of surface-bound MnII compared to aqueous MnII may be ascribed to its bandgap decrease, which warrants future research.

The contribution of the solid was further confirmed by repeating the oxidation experiment but by removing the solid from solution (e.g., through filtration) after the pre-equilibration period (Fig. S16). Indeed, the mineralization extent of NOR dropped to less than 21 ± 2%. When the same experiment was performed with goethite a slight decrease of mineralization was observed, 53 ± 2% when goethite was removed from the solution after 24 h of pre-equilibration time against 69 ± 2% in presence of goethite (Fig. S16).

As a further attempt to gain insights into the enhanced reactivity of reacted MnO\textsubscript{2} system, Mn oxides with lower valence states (MnIII) as in manganite (γ-MnIIIOOH) were investigated. 37 % and complete mineralization were obtained with PS/MnOOH and PS/MnOOH/UVA processes, respectively (Fig. 5), compared to 30 and 65 % with PS/MnO\textsubscript{2} and PS/MnO\textsubscript{2}/UVA processes, respectively (Fig. 2). When NOR and manganite were allowed for 1h pre-equilibration before starting the oxidation reaction, complete mineralization was also observed in the PS/MnOOH/UVA system, but only after 35 h of reaction time (Fig. 5). This implies that the photo-generation of MnII enhances the oxidation performance, regardless of the starting solid, e.g. MnIVO\textsubscript{2} or MnIIIOOH.
Taken together, these results suggest that oxide-bound MnII is key in catalyzing the oxidation reaction and enhancing the mineralization rate under UVA irradiation through a redox cycle. MnII species or photogenerated MnII species react first with oxidants to produce radicals through eqs. 13 and 16. Then, MnII species could be re-generated via photo-reduction of active sites on MnO$_x$ or MnOOH surfaces, which in turn react with PS or H$_2$O$_2$ to generate SO$_4$$^{2-}$ or ‘OH. The higher fluoroquinolone degradation in the presence of PS compared to H$_2$O$_2$ can be probably ascribed to the i) higher ability of MnII in PS activation compared to H$_2$O$_2$ and ii) higher selectivity of generated sulfate radical (e.g. less subjected for scavenging effects compared to ‘OH) toward fluoroquinolones. It is worth noting that photo-assisted generation and/or regeneration of MnII may require a certain time, as TOC removal kinetics exhibited a two-step behavior, i.e. sharp decay after a first slow phase, particularly in the PS/UVA system, and regardless of the underlying surface, MnIVO$_2$ (Fig. 4) or MnIIIOOH (Fig. 5).

3. Environmental implications

We have notably demonstrated that a short pre-equilibration time between redox-active minerals and antibiotics is crucial to achieve total elimination or mineralization of compounds. Reduced metal ions generated during the pre-equilibration stage and contacted/adsorbed to oxide minerals are highly active in triggering oxidation reactions and achieving complete mineralization. This key promoter of oxidation reaction is generated in situ with no other reactant added. MnO$_x$ system exhibits more reactivity than FeOOH because (i) of its higher reduction potential (MnIII/MnII being more electron acceptor than FeIII/FeII), (ii) two one-electron transfer steps or a single two-electron step may be operative during MnIVO$_2$ reduction, and/or (iii) photoreductive dissolution of MnIVO$_x$ is more thermodynamically favorable, irrespective of the presence or absence of complexing ligands.
In the first stage, the oxidative transformation is attributed to sequential one electron-transfer reactions, i.e., electron transfer within the precursor complex formed between the molecule and the surface-bound metal, that result in reductive dissolution of the oxide and oxidation of the molecule. In the second stage, the byproducts are attacked by radical species, generated upon addition of \(\text{H}_2\text{O}_2 \) or \(\text{S}_2\text{O}_8^{2-} \) under UVA irradiation, which achieved mineralization via probably ring-opening reactions. If the compound (e.g. FLU) solely adsorbs to oxide surfaces with no redox reaction during the first stage of reaction, a pre-equilibration period does not impact the mineralization extent regardless of the duration of the first stage.

Oxide-bound \(\text{Mn}^{II} \) is essential in catalyzing oxidation reaction and then producing greater amounts of radical species through a photo-assisted redox cycle. Light enhanced the rate of \(\text{Mn}^{2+} \) generation, which in turn reacts with \(\text{H}_2\text{O}_2 \) or \(\text{S}_2\text{O}_8^{2-} \) to produce more radical species and then oxidize/mineralize target compounds. This shows the greater ability of \(\text{MnO}_2 \) as compared to iron oxides, in inducing electron transfer reactions with antibiotics, and then triggering their subsequent radical-based degradation. These results provide a novel strategy towards the application of redox active minerals in a dynamic two-step treatment process, where the redox byproducts generated \textit{in-situ} during the first stage strongly contribute in achieving total removal of TOC. Because of the great affinity of manganese ions for Mn-oxide surfaces at neutral pH, the \(\text{Mn}^{2+} \) leaching from the oxide surface is very limited, and much below the wastewater discharge limits. Therefore, the developed system will be of scientific significance in both Mn-based oxidation reactions and practical wastewater treatment processes.

\textbf{Acknowledgments}

We gratefully acknowledge the Région Bretagne and Institut Universitaire de France for providing financial support.
Supporting Information Available. Solubility tests and speciation vs pH, additional kinetics data in sorption/desorption and formation of byproducts; adsorption of Mn$^{2+}$ to MnO$_2$, oxidation/mineralization kinetics for FLU and NOR under different experimental conditions, LFP experimental datasets. This information is available free of charge via the Internet at http://pubs.acs.org/.
References

Table 1. Second-order rate constants between flumequine (FLU) and norfloxacin (NOR) determined by laser flash photolysis with hydroxyl and sulfate radicals at different pH values.

<table>
<thead>
<tr>
<th>Molecule</th>
<th>pH</th>
<th>$k_{H\cdot}$ (M$^{-1}$ s$^{-1}$)</th>
<th>$k_{SO\cdot}$ (M$^{-1}$ s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLU</td>
<td>3</td>
<td>$1.80 \pm 0.17 \times 10^{10}$</td>
<td>$1.86 \pm 0.30 \times 10^{9}$</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>$6.34 \pm 0.13 \times 10^{9}$</td>
<td>$1.81 \pm 0.12 \times 10^{9}$</td>
</tr>
<tr>
<td>NOR</td>
<td>3.5</td>
<td></td>
<td>$2.09 \pm 0.17 \times 10^{9}$</td>
</tr>
<tr>
<td></td>
<td>7.5</td>
<td>$6.18 \pm 0.18 \times 10^{9}$</td>
<td>$1.36 \pm 0.14 \times 10^{9}$</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td></td>
<td>$1.31 \pm 0.30 \times 10^{9}$</td>
</tr>
</tbody>
</table>

(ref.49)
Figure captions

Figure 1: Kinetics of NOR removal and Mn$^{2+}$ release under dark conditions at pH 6.5 ± 0.1: [NOR] = 24 µM; [MnO$_2$] = 0.027 g L$^{-1}$ (10 m2 L$^{-1}$).

Figure 2: Removal kinetics of NOR$_{tot}$ (empty symbols) and TOC$_{tot}$ (full symbols) with simultaneous addition of solids and oxidants under dark and irradiation conditions at pH 6.5 ± 0.1. [NOR]$_o$ = 24 µM; [H$_2$O$_2$]$_o$ = [S$_2$O$_8^{2-}$]$_o$ = 0.5 mM; [goethite]$_o$ = 0.118 g L$^{-1}$ (10 m2 L$^{-1}$); [MnO$_2$]$_o$ = 0.027 g L$^{-1}$ (10 m2 L$^{-1}$).

Figure 3: Removal kinetics of NOR$_{tot}$ (empty symbols) and TOC$_{tot}$ (full symbols) after 24 h of pre-equilibration time under dark and irradiation conditions at pH 6.5 ± 0.1: [NOR]$_o$ = 24 µM; [H$_2$O$_2$]$_o$ = [S$_2$O$_8^{2-}$]$_o$ = 0.5 mM; [goethite]$_o$ = 0.118 g L$^{-1}$ (10 m2 L$^{-1}$); [MnO$_2$]$_o$ = 0.027 g L$^{-1}$ (10 m2 L$^{-1}$). The arrow indicates the moment where oxidant addition and/or UVA irradiation take place.

Figure 4: Removal kinetics of NOR$_{tot}$ (empty symbols) and TOC$_{tot}$ (full symbols) with MnO$_2$ and S$_2$O$_8^{2-}$ (PS) under dark and irradiation conditions at pH 6.5 ± 0.1: [NOR]$_o$ = 24 µM; [S$_2$O$_8^{2-}$]$_o$ = 0.5 mM; [MnO$_2$]$_o$ = 0.027 g L$^{-1}$ (10 m2 L$^{-1}$); Pre-equilibration time = 1h.

Figure 5: Removals kinetic of NOR$_{tot}$ (empty symbols) and TOC$_{tot}$ (full symbols) using MnOOH without or with pre-equilibration time under dark and irradiation conditions and at pH 6.5 ± 0.1: [NOR]$_o$ = 24 µM; [S$_2$O$_8^{2-}$]$_o$ = 0.5 mM; [MnOOH]$_o$ = 0.154 g L$^{-1}$ (10 m2 L$^{-1}$). The vertical dashed line indicates the moment (1h) where oxidant addition and/or UVA irradiation take place.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Graphical Abstract

$S_2O_8^{2-}$ \rightarrow SO$_4^{2-}$ $\rightarrow CO_2$

hv

MnIV(s) \rightarrow Mn^{III}$(s) \rightarrow MnII(s) \rightarrow NOR

NOR$_{ox}$