R. M. Cornell and U. Schwertmann, The Iron Oxides Structure, p.470

U. Occurences, ;. Weinheim, and . Cambridge, , 2003.

M. F. Hochella, S. K. Lower, P. A. Maurice, R. L. Penn, N. Sahai et al., , p.472

B. S. Twining and . Nanominerals, Mineral Nanoparticles, and Earth Systems, Science, vol.473, pp.1631-1635, 2008.

A. T. Stone, Reductive dissolution of manganese (III/IV) oxides by substituted phenols

, Environ. Sci. Technol, vol.21, pp.979-988, 1987.

M. B. Mcbride, Adsorption and oxidation of phenolic compounds by iron and manganese 477 oxides, Environ. Toxicol. Chem, issue.6, pp.1466-1472, 1987.

J. Feitosa-felizzola, K. Hanna, and S. Chiron, Adsorption and transformation of selected 479 human-used macrolide antibacterial agents with iron(III) and manganese(IV) oxides

. Environ, , vol.157, pp.1317-1322, 2009.

H. Zhang and C. Huang, Oxidative transformation of fluoroquinolone antibacterial agents 482 and structurally related amines by manganese oxide, Environ. Sci. Technol, vol.39, pp.483-4474, 2005.

K. F. Rubert and J. A. Pedersen, Kinetics of Oxytetracycline Reaction with a Hydrous 485

, Manganese Oxide. Environ. Sci. Technol, vol.40, issue.23, pp.7216-7221, 2006.

K. Lin, W. Liu, and J. Gan, Reaction of tetrabromobisphenol A (TBBPA) with manganese 487 dioxide: Kinetics, products, and pathways, Environ. Sci. Technol, vol.43, issue.12, p.4480, 2009.

C. K. Remucal and M. Ginder-vogel, A critical review of the reactivity of manganese oxides 490 with organic contaminants, Environ. Sci. Process. Impacts, vol.16, pp.1247-1266, 2014.

S. Martin, A. Shchukarev, K. Hanna, and J. Boily, Kinetics and Mechanisms, p.492

, Ciprofloxacin Oxidation on Hematite Surfaces. Environ. Sci. Technol, vol.49, pp.493-12197, 2015.

A. J. Salter-blanc, E. J. Bylaska, M. A. Lyon, S. C. Ness, P. G. Tratnyek et al., , p.495

, Activity Relationships for Rates of Aromatic Amine Oxidation by Manganese Dioxide

, Environ. Sci. Technol, vol.50, issue.10, pp.5094-5102, 2016.

S. Balgooyen, P. J. Alaimo, C. K. Remucal, and M. Ginder-vogel, Structural transformation 498 of MnO 2 during the oxidation of Bisphenol A, Environ. Sci. Technol, vol.51, p.6053, 2017.

J. Huang, S. Zhong, Y. Dai, C. Liu, and H. Zhang,

, Oxidative Reactivity toward Bisphenol A Degradation. Environ. Sci. Technol, vol.52, pp.11309-11318, 2018.

R. J. Watts, J. Sarasa, F. J. Loge, and A. L. Teel, Oxidative and reductive pathways in 504 manganese-catalyzed Fenton's reactions, J. Environ. Eng, vol.131, pp.158-164, 2005.

H. Liu, T. A. Bruton, F. M. Doyle, and D. L. Sedlak, Situ Chemical Oxidation of, p.506

, Contaminated Groundwater by Persulfate: Decomposition by Fe (III)-and, p.507

, Containing Oxides and Aquifer Materials, Environ. Sci. Technol, vol.48, pp.10330-10336, 2014.

P. Avetta, A. Pensato, M. Minella, M. Malandrino, V. Maurino et al., , p.509

K. Vione and D. , Activation of Persulfate by Irradiated Magnetite: Implications for the 510 Degradation of Phenol under Heterogeneous Photo-Fenton-Like Conditions, Environ. Sci

. Technol, , vol.49, pp.1043-1050, 2015.

P. Neta, R. E. Huie, and A. B. Ross, Rate constants for reactions of inorganic radicals in 513 aqueous solution, J. Phys. Chem. Ref. Data, vol.17, pp.1027-1284, 1988.

R. E. Huie, C. L. Clifton, and P. Neta, Electron transfer reaction rates and equilibria of the 515 carbonate and sulfate radical anions, Radiat. Phys. Chem, vol.38, issue.5, pp.477-481, 1991.

A. Jia, Y. Wan, Y. Xiao, and J. Hu, Occurrence and Fate of Quinolone and Fluoroquinolone 517

, Antibiotics in a Municipal Sewage Treatment Plant, Water Res, vol.2012, issue.2, pp.387-394

T. Zhang and B. Li, Occurrence, Transformation, and Fate of Antibiotics in Municipal 519

, Wastewater Treatment Plants, Crit. Rev. Env. Sci. Tec, issue.11, pp.951-998, 2011.

R. Marsac, S. Martin, J. Boily, and K. Hanna, Oxolinic Acid Binding at Goethite and 521

, Akaganéite Surfaces: Experimental Study and Modeling, Environ. Sci. Technol, vol.50, issue.2, pp.660-668, 2016.

J. W. Murray, The surface chemistry of hydrous manganese dioxide, J. Colloid Interface, vol.524

. Sci, , vol.46, pp.357-371, 1974.

C. Yu, J. Boily, A. Shchukarev, H. Drake, Z. Song et al., A 526 cryogenic XPS study of Ce fixation on nanosized manganite and vernadite: Interfacial 527 reactions and effects of fulvic acid complexation, Chem. Geol, vol.483, pp.304-311, 2018.

H. Zhao, M. Zhu, W. Li, E. J. Elzinga, M. Villalobos et al., , p.529

D. L. Sparks, Redox Reactions between Mn(II) and Hexagonal Birnessite Change Its 530 Layer Symmetry, Environ. Sci. Technol, vol.4, pp.50-56, 2016.

W. Huang, W. Bianco, M. Brigante, and G. Mailhot, UVA-UVB activation of hydrogen 532 peroxide and persulfate for advanced oxidation processes: Efficiency, mechanism and 533 effect of various water constituents, J. Haz. Mat, vol.347, pp.279-287, 2018.

H. Zhang and C. H. Huang, Adsorption and oxidation of fluoroquinolone antibacterial agents 535 and structurally related amines with goethite, Chemosphere, vol.66, issue.8, pp.1502-1512, 2007.

T. Paul, J. Liu, M. L. Machesky, and T. Strathmann, Adsorption of zwitterionic 537 fluoroquinolone antibacterials to goethite: A charge distribution-multisite complexation 538 model, J. Coll. Int. Sci, vol.428, pp.63-72, 2014.

O. Furman, D. F. Laine, A. Blumenfeld, A. L. Teel, K. Shimizu et al., , p.540

R. J. , Enhanced reactivity of superoxide in water ? solid matrices, Environ. Sci. Technol, vol.541, pp.1528-1533, 2009.

H. Liu, T. A. Bruton, W. Li, J. V. Buren, C. Prasse et al.,

, Oxidation of Benzene by Persulfate in the Presence of Fe(III)-and Mn(IV)-Containing 544

, Oxides: Stoichiometric Efficiency and Transformation Products, Environ. Sci. Technol, vol.545, pp.890-898, 2016.

G. Fang, X. Chen, W. Wu, C. Liu, D. D. Dionysiou et al., , p.547

, Mechanisms of Interaction between Persulfate and Soil Constituents: Activation, Free 548 Radical Formation, Conversion, and Identification, Environ. Sci. Technol, vol.52, pp.549-14352, 2018.

S. Zhu, X. Li, J. Kang, X. Duan, and S. Wang, Persulfate Activation on Crystallographic, vol.551

, Manganese Oxides: Mechanism of Singlet Oxygen Evolution for Nonradical Selective 552 Degradation of Aqueous Contaminants, Environ. Sci. Technol, vol.53, pp.307-315, 2018.

P. Neta, V. Madhavan, H. Zemel, and R. W. Fessenden, Rate constants and mechanism of 554 reaction of SO 4 ? -with aromatic compounds, J. Am. Chem. Soc, vol.99, pp.163-164, 1977.

G. V. Buxton, C. L. Greenstock, W. P. Helman, and A. B. Ross, Critical review of rate 556 constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals, p.557

, / O 2 ? -) in aqueous solution, J. Phys. Chem. Ref. Data, vol.17, pp.513-886, 1988.

R. Gonzalez-olmos, M. J. Martin, A. Georgi, F. Kopinke, I. Oller et al., Fe-559 zeolites as heterogeneous catalysts in solar Fenton-like reactions at neutral pH

. Catal, , vol.125, pp.51-58, 2012.

M. Minella, G. Marchetti, E. De-laurentiis, M. Malandrino, V. Maurino et al., , vol.562

D. Vione and K. Hanna, Photo-Fenton oxidation of phenol with magnetite as iron source
URL : https://hal.archives-ouvertes.fr/hal-00976613

, Appl. Catal. B: Environ, vol.154, pp.102-109, 2014.

E. J. Kim, D. Oh, C. S. Lee, J. Gong, and J. Kim, , p.565

, Fenton-like catalyst at neutral pH: Crystal phase-dependent behavior, Catal. Today, vol.566, pp.71-76, 2017.

Y. Xu, H. Lin, Y. Li, and H. Zhang, The mechanism and efficiency of MnO 2 activated 568 persulfate process coupled with electrolysis, Sci. Total Environ, vol.609, pp.644-654, 2017.

G. W. Luther and . Iii, The role of one-and two-electron transfer reactions in forming 570 thermodynamically unstable intermediates as barriers in multi-electron redox reactions

. Aquat and . Geochem, , vol.16, pp.395-420, 2010.

S. Baral, C. Lume-pereira, E. Janata, and A. Henglein, Chemistry of colloidal manganese 573 dioxide. 2. Reaction with superoxide anion (O 2 .-) and hydrogen peroxide (pulse radiolysis 574 and stop flow studies), J. Phys. Chem, vol.89, pp.5779-5783, 1985.

D. M. Sherman, Electronic structures of iron(III) and manganese(IV) (hydr)oxide 576 minerals: Thermodynamics of photochemical reductive dissolution in aquatic 577 environments, Geochim. Cosmochim. Acta, vol.69, pp.3249-3255, 2005.

W. G. Sunda, S. A. Huntsman, and G. R. Harvey, Photoreduction of manganese oxides in 579 seawater and its geochemical and biological implications, Nature, vol.301, pp.234-236, 1983.

W. G. Sunda and S. A. Huntsman, Photoreduction of manganese oxides in seawater

. Chem, , vol.46, pp.133-152, 1994.

T. D. Waite, Wrlgley, I. C.; Szymczak R. Photoassisted Dissolution of a Colloidal 583

, Manganese Oxide in the Presence of Fulvic Acid, Environ. Sci. Technol, vol.27, issue.7, 1988.

F. F. Marafatto, M. L. Strader, J. Gonzalez-holguera, A. Schwartzberg, and B. Gilbert, , p.586

J. Peña, Rate and mechanism of the photoreduction of birnessite (MnO 2 ) nanosheets

, Proc. Nat. Acad. Sci, pp.1-6, 2015.

J. Klausen, S. B. Haderlein, and R. P. Schwarzenbach, , p.589

, aqueous MnO 2 : Effect of Co-solutes on initial and quasi-steady-state kinetics

. Sci, , vol.31, pp.2642-2649, 1997.

J. E. Post, Manganese oxide minerals: Crystal structures and economic and environmental 592 significance, Proc. Natl. Acad. Sci, vol.96, pp.3447-3454, 1999.

N. Birkner and A. Navrotsky, Rapidly reversible redox transformation in nanophase 594 manganese oxides at room temperature triggered by changes in hydration, Proc. Natl

. Acad and . Sci, , vol.111, pp.6209-6214, 2014.

V. Alexandrov and K. M. Rosso, Ab initio modeling of Fe(II) adsorption and interfacial 597 electron transfer at goethite (?-FeOOH) surfaces, Phys. Chem. Chem. Phys, vol.17, pp.598-14518, 2015.

T. An, H. Yang, W. Song, G. Li, H. Luo et al., Mechanistic considerations for 600 the advanced oxidation treatment of fluoroquinolone pharmaceutical compounds using 601

, TiO 2 heterogeneous catalysis, J. Phys. Chem. A, vol.114, pp.2569-2575, 2010.