N. Carbenes-;-hopkinson, M. N. Richter, C. Schedler, M. Glorius, and F. , An Overview of N-Heterocyclic Carbenes, From Laboratory Curiosities to Efficient Synthetic Tools, vol.510, pp.485-496, 2011.

S. P. Nolan, C. S. Cazin, . Eds, S. Díez-gonzalez, N. Marion et al., Thieme: Stuttgart, 2016; Vols. 1 and 2; For a review dealing with NHC TM complexes in catalysis, see: (d), Chem. Rev, vol.109, pp.3612-3676, 2009.

M. T. Powell, D. Hou, M. C. Perry, X. Cui, K. Burgess et al., Privileged Chiral N-Heterocyclic Carbene Ligands for Asymmetric Transition-Metal Catalysis, Selected reviews on chiral NHC in catalysis, vol.123, issue.3, pp.4845-4854, 2001.

X. Luan, R. Mariz, C. Robert, M. Gatti, . Blumentritt et al., Matching the Chirality of Monodentate N-Heterocyclic Carbene Ligands: A Case Study of Well-Defined Palladium Complexes for the Asymmetric ?-Arylation of Amides, For a seminal study on the chiral relay, vol.10, pp.5569-5572, 2008.

Y. Hong, L. Jarrige, K. Harms, and E. Meggers, Chiral-at-Iron Catalyst: Expanding the Chemical Space for Asymmetric Earth-Abundant Metal Catalysis, The synthesis of chiral-at-complexes from achiral NHC ligand precursors was recently reported, vol.141, pp.4569-4572, 2019.

L. Norel, M. Rudolph, N. Vanthuyne, J. A. Williams, C. Lescop et al., The chiral HPLC resolution of chiral transition-metal complexes was scarcely reported, and to the best of our knowledge, none of them was used as chiral catalyst, see: (a), Easily Accessible Helicene Derivatives with Large and Tunable Chiroptical Properties

N. Hellou, C. Jahier-diallo, O. Baslé, M. Srebro-hooper, L. Toupet et al., Electronic and Chiroptical Properties of Chiral Cycloiridiated Complexes Bearing Helicenic NHC Ligands, Angew. Chem. Int. Ed, vol.49, pp.9243-9246, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01339910

M. ?ki, N. L. Allinger, E. L. Eliel, S. H. Wilen, A. Ibon et al., Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy, Heteroaromatic Compounds. Advances in Heterocyclic Chemistry, vol.56, pp.154104-154104, 1983.

J. Zhang, J. Fu, X. Su, X. Wang, S. Song et al., Synthesis of Various Saturated and Unsaturated N-Heterocyclic Carbene Precursors by Triflic Anhydride Mediated Intramolecular Cyclization, -copper complexes and their applications in N-Heterocyclic Carbenes -Effective Tools for Organometallic Synthesis, vol.8, pp.552-555, 2013.

S. P. Nolan and . Ed, , pp.199-242, 2014.

O. F. Wendt, Transmetalation Reactions Involving Group 10

. Metals, . Curr, . Org, . Chem, O. Santoro et al., Homoleptic and Heteroleptic Bis-NHC Cu(I) Complexes as Carbene Transfer Reagents, vol.11, pp.628-631, 1417.

S. M. Vanden-broeck, F. Nahra, C. S. Cazin, C. M. Zinser, F. Nahra et al., Bulky-yet-flexible Carbene Ligands and Their Use in Palladium Cross-coupling, For selected recent examples of synthesis of Pd-and Au-NHC complexes, vol.55, pp.6799-6802, 2019.

X. Luan, R. Mariz, M. Gatti, C. Costabile, A. Poater et al., These values are in line with those determined both by DFT calculations and experimentally in previous reports, see: (a), Z. Anorg. Allg. Chem, vol.130, pp.105-112, 2008.

, See Supporting Information, Scheme SX and SX

O. Baslé, A. Denicourt-nowicki, C. Crévisy, and M. Mauduit, Asymmetric Allylic Alkylation in Copper-Catalyzed Asymmetric Synthesis, 2014.

A. Alexakis, J. E. Backvall, N. Krause, O. Pamies, and M. Dieguez, Enantioselective Copper-Catalyzed Conjugate Addition and Allylic Substitution Reactions, ?125. (b), vol.108, pp.2796-2823, 2008.

E. P. Seidel, T. M. Jia, Y. Bernardinelli, and G. , It is noteworthy that the chiral induction reached here is one of the best reported so far regarding the class of C1-symmetric monodentate NHCs, see ref. 3. (21) For a selected example of successful Pd-AIA promoted by chiral NHC ligands, see: Kündig, Angew. Chem. Int. Ed, vol.46, 2007.