J. Slack, Conrad Hal Waddington: the last Renaissance biologist?

A. D. Goldberg, C. D. Allis, and E. Bernstein, Epigenetics: A Landscape Takes Shape, Cell, vol.456, issue.4, pp.635-638, 2007.

C. D. Allis and T. Jenuwein, The molecular hallmarks of epigenetic control, Nat. Rev. Genet, vol.458, issue.8, pp.487-500, 2016.

K. Dzobo, Epigenomics-Guided Drug Development: Recent Advances in Solving the 460 Cancer Treatment "jigsaw puzzle, OMICS, vol.23, issue.2, pp.70-85, 2019.

M. Esteller, Epigenetic drugs: More than meets the eye, undefined, vol.12, issue.5, p.462, 2017.

D. Schübeler, Function and information content of DNA methylation, Nature, vol.464, issue.7534, pp.321-326, 2015.

V. W. Zhou, A. Goren, and B. E. Bernstein, Charting histone modifications and the functional 466 organization of mammalian genomes, Nat. Rev. Genet, vol.12, issue.1, pp.7-18, 2011.

T. Kouzarides, Chromatin Modifications and Their Function, Cell, vol.128, issue.4, p.468, 2007.

E. M. Michalak, M. L. Burr, A. J. Bannister, and M. A. Dawson, The roles of DNA, RNA and histone 470 methylation in ageing and cancer, Nat. Rev. Mol. Cell Biol, vol.150, issue.6, pp.12-17, 2019.

A. V. , The functions of animal microRNAs, Nature, vol.431, issue.7006, pp.350-355, 2004.

J. Fernandes, S. M. Acuña, J. I. Aoki, L. M. Floeter-winter, and S. M. Muxel, Long Non-Coding, vol.473

, RNAs in the Regulation of Gene Expression: Physiology and Disease. Noncoding RNA, vol.474, issue.1, p.17, 2019.

Y. Sun, Y. Wang, W. Ge, S. Cheng, P. W. Dyce et al., Epigenetic regulation during 476 the differentiation of stem cells to germ cells, Oncotarget, vol.8, issue.34, p.477, 2017.

A. Subramaniam, A. Yehya, W. K. Cheng, X. Wang, and C. E. Oon, Epigenetics: The master 479 control of endothelial cell fate in cancer, Life Sciences, vol.232, p.116652, 2019.

A. Jambhekar, A. Dhall, and Y. Shi, Roles and regulation of histone methylation in animal 481 development, Nat. Rev. Mol. Cell Biol, vol.403, pp.1-17, 2019.

H. Du and C. G. , Genetic alterations and epigenetic alterations of cancer-associated 483 fibroblasts, Oncol Lett, vol.13, issue.1, pp.3-12, 2017.

M. Liu, J. Zhou, Z. Chen, and A. Cheng, Understanding the epigenetic regulation of 485 tumours and their microenvironments: opportunities and problems for epigenetic 486 therapy, J. Pathol, vol.241, issue.1, pp.10-24, 2017.

*. , This review underlines the impact of epigenetic control on the tumor 488 microenvironment and in particular myeloid compartment

D. L. Marks, R. L. Olson, and M. E. Fernandez-zapico, Epigenetic control of the tumor 490 microenvironment, vol.8, p.491, 2016.

R. Pidsley, M. G. Lawrence, and E. Zotenko, Enduring epigenetic landmarks define the 493 cancer microenvironment, Genome Res, vol.28, issue.5, pp.625-638, 2018.

J. S. You and P. A. Jones, Cancer Genetics and Epigenetics: Two Sides of the Same Coin? 495 Cancer Cell, vol.22, pp.9-20, 2012.

M. Boice, D. Salloum, and F. Mourcin, Loss of the HVEM Tumor Suppressor in 497 Lymphoma and Restoration by Modified CAR-T Cells, Cell, vol.167, issue.2, p.498, 2016.

L. Pasqualucci, Molecular pathogenesis of germinal center-derived B cell lymphomas, Immunological Reviews, vol.500, issue.1, pp.240-261, 2019.

M. R. Green, Chromatin modifying gene mutations in follicular lymphoma, Blood, vol.502, issue.6, pp.595-604, 2018.

J. Martignoles, F. Delhommeau, and P. Hirsch, Genetic Hierarchy of Acute Myeloid 504 Leukemia: From Clonal Hematopoiesis to Molecular Residual Disease, International 505 Journal of Molecular Sciences, vol.19, issue.12, p.3850, 2018.

P. A. Jones and P. W. Laird, Cancer-epigenetics comes of age, Nature Genetics, vol.21, issue.2, pp.163-507, 1999.

P. A. Jones and S. B. Baylin, The Epigenomics of Cancer. Cell, vol.128, issue.4, pp.683-692, 2007.

W. Park, B. Hong, J. Lee, C. Choi, and M. Kim, H3K27 Demethylase JMJD3 Employs the 510 NF-?B and BMP Signaling Pathways to Modulate the Tumor Microenvironment and 511

, Promote Melanoma Progression and Metastasis, Cancer Res, vol.76, issue.1, pp.161-170, 2016.

D. Hanahan and L. M. Coussens, Accessories to the Crime: Functions of Cells Recruited to 513 the Tumor Microenvironment, Cancer Cell, vol.21, issue.3, pp.309-322, 2012.

E. Hirata and E. Sahai, Tumor Microenvironment and Differential Responses to Therapy. 515 Cold Spring Harb Perspect Med, vol.7, p.26781, 2017.

D. A. Senthebane, T. Jonker, and A. Rowe, The Role of Tumor Microenvironment in 517 Chemoresistance: 3D Extracellular Matrices as Accomplices, International Journal of 518 Molecular Sciences, vol.19, issue.10, p.2861, 2018.

D. A. Senthebane, A. Rowe, and N. E. Thomford, The Role of Tumor Microenvironment 520 in Chemoresistance: To Survive, Keep Your Enemies Closer, International Journal, vol.521, p.58

W. Bechtel, S. Mcgoohan, and E. M. Zeisberg, Methylation determines fibroblast 602 activation and fibrogenesis in the kidney, Nat. Med, vol.16, issue.5, pp.544-550, 2010.

R. Mishra, S. Haldar, and V. Placencio, Stromal epigenetic alterations drive metabolic 604 and neuroendocrine prostate cancer reprogramming, J. Clin. Invest, vol.128, issue.10, p.4484, 2018.

L. A. Al-kharashi, F. H. Al-mohanna, A. Tulbah, and A. Aboussekhra, The DNA methyl-607 transferase protein DNMT1 enhances tumor-promoting properties of breast stromal 608 fibroblasts, Oncotarget, vol.9, issue.2, pp.2329-2343, 2018.

A. Li, P. Chen, Y. Leng, and J. Kang, Histone deacetylase 6 regulates the immunosuppressive 610 properties of cancer-associated fibroblasts in breast cancer through the STAT3-611 COX2-dependent pathway, Oncogene, vol.37, issue.45, pp.5952-5966, 2018.

A. Garcia-gomez, J. Rodríguez-ubreva, and E. Ballestar, Epigenetic interplay between 613 immune, stromal and cancer cells in the tumor microenvironment, Clinical 614 Immunology, vol.196, pp.64-71, 2018.

D. J. Kim, J. M. Dunleavey, and L. Xiao, Suppression of TGF?-mediated conversion of 616 endothelial cells and fibroblasts into cancer associated (myo)fibroblasts via HDAC 617 inhibition, British Journal of Cancer, vol.118, issue.10, pp.1359-1368, 2018.

V. Kumar, L. Donthireddy, and D. Marvel, Cancer-Associated Fibroblasts Neutralize 619 the Anti-tumor Effect of CSF1 Receptor Blockade by Inducing PMN-MDSC Infiltration 620 of Tumors, Cancer Cell, vol.32, issue.5, 2017.

D. E. Kim, M. Procopio, and S. Ghosh, Convergent roles of ATF3 and CSL in 622 chromatin control of cancer-associated fibroblast activation, J. Exp. Med, vol.214, issue.8, pp.2349-2368, 2017.

M. Maeda, H. Takeshima, and N. Iida, Cancer cell niche factors secreted from cancer-625 associated fibroblast by loss of H3K27me3, Gut. gutjnl, 2018.

Y. Zong, J. Huang, and D. Sankarasharma, Stromal epigenetic dysregulation is 627 sufficient to initiate mouse prostate cancer via paracrine Wnt signaling, Proc. Natl

L. Xu, Q. Deng, and Y. Pan, Cancer-associated fibroblasts enhance the migration 630 ability of ovarian cancer cells by increasing EZH2 expression, International Journal, p.631

, Molecular Medicine, vol.33, issue.1, pp.91-96, 2014.

R. Kaukonen, A. Mai, and M. Georgiadou, Normal stroma suppresses cancer cell 633 proliferation via mechanosensitive regulation of JMJD1a-mediated transcription. 634, Nature Communications, vol.7, issue.1, p.12237, 2016.

M. Schoepp, A. J. Ströse, and J. Haier, Dysregulation of miRNA Expression in Cancer 636 Associated Fibroblasts (CAFs) and Its Consequences on the Tumor 637 Microenvironment, Cancers (Basel), vol.9, issue.6, p.54, 2017.

M. Musumeci, V. Coppola, and A. Addario, Control of tumor and microenvironment 639 cross-talk by miR-15a and miR-16 in prostate cancer, Oncogene, vol.30, issue.41, p.640, 2011.

S. Josson, M. Gururajan, and S. Y. Sung, Stromal fibroblast-derived miR-409 promotes 642 epithelial-to-mesenchymal transition and prostate tumorigenesis, Oncogene, vol.34, issue.21, pp.2690-2699, 2015.

L. Batista, B. Bourachot, B. Mateescu, F. Reyal, and F. Mechta-grigoriou, Regulation of miR-645 200c/141 expression by intergenic DNA-looping and transcriptional read-through. 646, Nature Communications, vol.7, issue.1, p.8959, 2016.

Y. Togashi, K. Shitara, and H. Nishikawa, Regulatory T cells in cancer immunosuppression 648 -implications for anticancer therapy, Nature Reviews Clinical Oncology, vol.155, p.1, 2019.

E. Safari, S. Ghorghanlu, H. Ahmadi-khiavi, S. Mehranfar, R. Rezaei et al.,

, Myeloid-derived suppressor cells and tumor: Current knowledge and future 652 perspectives, J. Cell. Physiol, vol.117, issue.1, p.7021, 2018.

C. Zhang, S. Wang, Y. Liu, and C. Yang, Epigenetics in myeloid derived suppressor cells: a 654 sheathed sword towards cancer, Oncotarget, vol.7, issue.35, pp.57452-57463, 2016.

A. Heine, S. Held, and J. Schulte-schrepping, Generation and functional 656 characterization of MDSC-like cells, Oncoimmunology, vol.6, issue.4, p.1295203, 2017.

G. Lal, N. Zhang, and W. Van-der-touw, Epigenetic Regulation of Foxp3 Expression in 658

, Regulatory T Cells by DNA Methylation. The Journal of Immunology, vol.182, issue.1, p.659, 2009.

J. Rodríguez-ubreva, F. Català-moll, and N. Obermajer, Prostaglandin E2 Leads to the 661 Acquisition of DNMT3A-Dependent Tolerogenic Functions in Human Myeloid-662 Derived Suppressor Cells, Cell Reports, vol.21, issue.1, pp.154-167, 2017.

J. M. Sido, X. Yang, P. S. Nagarkatti, and M. Nagarkatti, ?9-Tetrahydrocannabinol-mediated 664 epigenetic modifications elicit myeloid-derived suppressor cell activation via 665 STAT3/S100A8, J. Leukoc. Biol, vol.97, issue.4, pp.677-688, 2015.

J. M. Sido, P. S. Nagarkatti, and M. Nagarkatti, ??-Tetrahydrocannabinol attenuates 667 allogeneic host-versus-graft response and delays skin graft rejection through 668 activation of cannabinoid receptor 1 and induction of myeloid-derived suppressor 669 cells, J. Leukoc. Biol, vol.98, issue.3, pp.435-447, 2015.

E. Sahakian, J. J. Powers, and J. Chen, Histone deacetylase 11: A novel epigenetic 671 regulator of myeloid derived suppressor cell expansion and function, Mol. Immunol, vol.672, issue.2, pp.579-585, 2015.

J. Youn, V. Kumar, and M. Collazo, Epigenetic silencing of retinoblastoma gene 674 regulates pathologic differentiation of myeloid cells in cancer, Nat. Immunol, vol.14, issue.3, pp.211-220, 2013.

P. S. Redd, M. L. Ibrahim, and J. D. Klement, Activates iNOS Expression in, p.677

, Myeloid-Derived Suppressor Cells, Cancer Res, vol.77, issue.11, pp.2834-2843, 2017.

D. Peng, I. Kryczek, and N. Nagarsheth, Epigenetic silencing of TH1-type chemokines 679 shapes tumour immunity and immunotherapy, Nature, vol.527, issue.7577, pp.249-253, 2015.

, * The epigenetic silencing of EZH2 and DNA methylation in TH1 cells allow re-681 expression of CXCL9 and CXCL10 and reduce tumor immunosuppression, vol.682, p.86

N. Nagarsheth, D. Peng, and I. Kryczek, , vol.683

, Chemokines to Suppress Effector T-Cell Trafficking in Colon Cancer, Cancer Res, vol.684, issue.2, pp.275-282, 2016.

X. Guo, W. Qiu, and J. Wang, Glioma exosomes mediate the expansion and function 686 of myeloid-derived suppressor cells through microRNA-29a/Hbp1 and microRNA-687 92a/Prkar1a pathways, International Journal of Cancer. ijc, p.32052, 2018.

X. Guo, W. Qiu, and Q. Liu, Immunosuppressive effects of hypoxia-induced glioma 689 exosomes through myeloid-derived suppressor cells via the miR-10a/ Rora

, / Pten Pathways. Oncogene, vol.37, issue.31, pp.4239-4259, 2018.

V. Huber, V. Vallacchi, and V. Fleming, Tumor-derived microRNAs induce myeloid 692 suppressor cells and predict immunotherapy resistance in melanoma, J. Clin. Invest, vol.693, issue.12, pp.5505-5516, 2018.

J. Zhou, X. Li, and X. Wu, Exosomes Released from Tumor-Associated Macrophages 695 Transfer miRNAs That Induce a Treg/Th17 Cell Imbalance in Epithelial Ovarian 696 Cancer, Cancer Immunol Res, vol.6, issue.12, pp.1578-1592, 2018.

C. B. Yoo and P. A. Jones, Epigenetic therapy of cancer: past, present and future, Nature 698 Reviews Drug Discovery, vol.5, issue.1, pp.37-50, 2006.

L. Gherardini, A. Sharma, E. Capobianco, and C. Cinti, Targeting Cancer with Epi-Drugs: A 700 Precision Medicine Perspective, Curr Pharm Biotechnol, vol.17, issue.10, pp.856-865, 2016.

J. Issa and H. M. Kantarjian, Targeting DNA Methylation, Clin Cancer Res, vol.15, issue.12, pp.3938-702, 2009.

D. Roulois, L. Yau, H. Singhania, and R. , DNA-Demethylating Agents Target, vol.704

, Colorectal Cancer Cells by Inducing Viral Mimicry by Endogenous Transcripts, Cell. 705, vol.162, issue.5, pp.961-973, 2015.

*. , This study demonstrated the decreasing of colorectal cancers cells proliferation by 707 DNA-demethylating agents which induce a viral mimicry response, vol.708, p.95

K. B. Chiappinelli, P. L. Strissel, and A. Desrichard, Inhibiting DNA Methylation Causes an 709

, Interferon Response in Cancer via dsRNA Including Endogenous Retroviruses, Cell, vol.710, issue.5, pp.974-986, 2015.

H. Zhao, S. Ning, and R. Nolley, The immunomodulatory anticancer agent, RRx-001, 712 induces an interferon response through epigenetic induction of viral mimicry, Clin 713 Epigenetics, vol.9, issue.1, p.4, 2017.

H. E. Ghoneim, Y. Fan, and A. Moustaki, Novo Epigenetic Programs Inhibit PD, issue.1

, Blockade-Mediated T Cell Rejuvenation. Cell, vol.170, issue.1, 2017.

K. P. Terracina, L. J. Graham, and K. K. Payne, DNA methyltransferase inhibition increases 717 efficacy of adoptive cellular immunotherapy of murine breast cancer, Cancer 718 Immunol. Immunother, vol.65, issue.9, pp.1061-1073, 2016.

R. Miky?ková, M. Indrová, and V. Vlková, DNA demethylating agent 5-azacytidine 720 inhibits myeloid-derived suppressor cells induced by tumor growth and 721 cyclophosphamide treatment, J. Leukoc. Biol, vol.95, issue.5, pp.743-753, 2014.

K. Yamamoto, K. Tateishi, and Y. Kudo, Stromal remodeling by the BET bromodomain 723 inhibitor JQ1 suppresses the progression of human pancreatic cancer, Oncotarget, vol.724, issue.7, pp.61469-61484, 2016.

L. Sala, H. Franco-valls, and J. Stanisavljevic, Abrogation of myofibroblast activities in 726 metastasis and fibrosis by methyltransferase inhibition, International Journal of 727 Cancer, vol.19, p.1423, 2019.

M. L. Stone, K. B. Chiappinelli, and H. Li, Epigenetic therapy activates type I interferon 729 signaling in murine ovarian cancer to reduce immunosuppression and tumor 730 burden, Proc. Natl. Acad. Sci. U.S.A, vol.114, issue.51, pp.10981-10990, 2017.

S. Goswami, I. Apostolou, and J. Zhang, Modulation of EZH2 expression in T cells 732 improves efficacy of anti-CTLA-4 therapy, J. Clin. Invest, vol.128, issue.9, pp.3813-3818, 2018.

B. J. Christmas, C. I. Rafie, and A. C. Hopkins, Entinostat Converts Immune-Resistant 734 Breast and Pancreatic Cancers into Checkpoint-Responsive Tumors by 735 Reprogramming Tumor-Infiltrating MDSCs, Cancer Immunol Res, vol.6, issue.12, pp.1561-1577, 2018.

D. Briere, N. Sudhakar, and D. M. Woods, The class I/IV HDAC inhibitor mocetinostat 738 increases tumor antigen presentation, decreases immune suppressive cell types and 739 augments checkpoint inhibitor therapy, Cancer Immunol. Immunother, vol.67, issue.3, p.392, 2018.

S. Lee, H. Kim, and K. Roh, DNA methyltransferase inhibition accelerates the 742 immunomodulation and migration of human mesenchymal stem cells, Sci Rep, vol.5, p.8020, 2015.

S. Huang, Z. Wang, and J. Zhou, EZH2 inhibitor GSK126 suppresses anti-tumor 745 immunity by driving production of myeloid-derived suppressor cells, Cancer Res. 746 canres.2395, 2018.

B. R. Rosborough, A. Castellaneta, S. Natarajan, A. W. Thomson, and H. R. Turnquist, Histone 748 deacetylase inhibition facilitates GM-CSF-mediated expansion of myeloid-derived 749 suppressor cells in vitro and in vivo, J. Leukoc. Biol, vol.91, issue.5, pp.701-709, 2012.

P. Reddy, Editorial: HDAC inhibition begets more MDSCs, J. Leukoc. Biol, vol.91, issue.5, p.681, 2012.

R. Tao, E. F. De-zoeten, and E. Ozkaynak, Deacetylase inhibition promotes the 753 generation and function of regulatory T cells, Nat. Med, vol.13, issue.11, pp.1299-1307, 2007.

C. Doñas, M. Fritz, and V. Manríquez, Trichostatin A promotes the generation and 755 suppressive functions of regulatory T cells, Clin. Dev. Immunol, vol.2013, issue.67, pp.679804-679812, 2013.

T. Akimova, G. Ge, and T. Golovina, Histone/protein deacetylase inhibitors increase 758 suppressive functions of human FOXP3+ Tregs, Clin. Immunol, vol.136, issue.3, pp.348-363, 2010.

A. H. Nguyen, I. A. Elliott, and N. Wu, Histone deacetylase inhibitors provoke a tumor 761 supportive phenotype in pancreatic cancer associated fibroblasts, Oncotarget, vol.8, issue.12, pp.19074-19088, 2017.

E. Pazolli, E. Alspach, A. Milczarek, J. Prior, D. Piwnica-worms et al., Chromatin 764 remodeling underlies the senescence-associated secretory phenotype of tumor 765 stromal fibroblasts that supports cancer progression, Cancer Res, vol.72, issue.9, pp.2251-2261, 2012.

S. A. Cramer, I. M. Adjei, and V. Labhasetwar, Advancements in the delivery of epigenetic 768 drugs, Expert Opinion on Drug Delivery, vol.12, issue.9, pp.1501-1512, 2015.

Y. Zhu, F. Yu, Y. Tan, H. Yuan, and F. Hu, Strategies of targeting pathological stroma for 770 enhanced antitumor therapies, Pharmacological Research, vol.148, p.104401, 2019.

O. Schwartzman and A. Tanay, Single-cell epigenomics: techniques and emerging 772 applications, Nat. Rev. Genet, vol.16, issue.12, pp.716-726, 2015.

D. Lee, C. Luo, and J. Zhou, Simultaneous profiling of 3D genome structure and DNA 774 methylation in single human cells, Nat. Methods, vol.62, issue.10, pp.1-8, 2019.

G. Kelsey, O. Stegle, and W. Reik, Single-cell epigenomics: Recording the past and 776 predicting the future, Science, vol.358, issue.6359, pp.69-75, 2017.