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Camille Laurent5  · Thierry Fest1,2  · Jonathan M. Irish3,4 

Abstract

Tumor-associated macrophage and T-cell subsets are implicated in the pathogenesis of difuse large B-cell lymphoma, 

follicular lymphoma, and classical Hodgkin lymphoma. Macrophages provide essential mechanisms of tumor immune eva-

sion through checkpoint ligand expression and secretion of suppressive cytokines. However, normal and tumor-associated 

macrophage phenotypes are less well characterized than those of tumor-iniltrating T-cell subsets, and it would be especially 

valuable to know whether the polarization state of macrophages difers across lymphoma tumor microenvironments. Here, 

an established mass cytometry panel designed to characterize myeloid-derived suppressor cells and known macrophage 

maturation and polarization states was applied to characterize B-lymphoma tumors and non-malignant human tissue. High-

dimensional single-cell analyses were performed using dimensionality reduction and clustering tools. Phenotypically distinct 

intra-tumor macrophage subsets were identiied based on abnormal marker expression proiles that were associated with 

lymphoma tumor types. While it had been proposed that measurement of CD163 and CD68 might be suicient to reveal 

macrophage subsets in tumors, results here indicated that S100A9, CCR2, CD36, Slan, and CD32 should also be measured 

to efectively characterize lymphoma-speciic tumor macrophages. Additionally, the presence of phenotypically distinct, 

abnormal macrophage populations was closely linked to the phenotype of intra-tumor T-cell populations, including PD-1 

expressing T cells. These results further support the close links between macrophage polarization and T-cell functional state, 

as well as the rationale for targeting tumor-associated macrophages in cancer immunotherapies.
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Abbreviations

APC  Allophycocyanin

BSA  Bovine serum albumin

cDC  Classical dendritic cells

CM  Central memory

CyTOF  Cytometry by time-of-light

DC  Dendritic cell

DLBCL  Difuse large B-cell lymphoma

EM  Efector memory

EMRA  Efector memory  CD45RApos

FITC  Fluorescein isothiocyanate

FL  Follicular lymphoma

G-CSF  Granulocyte-colony stimulating factor

GM-CSF  Granulocyte macrophage-colony stimulating 

factor

HL  Hodgkin lymphoma

IDO  Indoleamine 2,3-dioxygenase

M_IL10  Macrophage polarized by IL-10

M_IL4  Macrophage polarized by IL-4

M_TPP  Macrophage polarized by TPP

M-CSF  Macrophage-colony stimulating factor

MDSC  Myeloid-derived suppressor cells

mIHC  Multiplex immunohistochemistry

N  Naive

PBS  Phosphate-bufered saline
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PD-1  Programmed cell death protein 1

PD-L1  Programmed death-ligand 1

pDC  Plasmacytoid dendritic cell

PE  Phycoerythrin

PFA  Paraformaldehyde

HD  Reactive lymphoid hyperplasia

S100A9  S100 calcium-binding protein A

Slan  6-Sulfo LacNAc

SPADE  Spanning-tree progression analysis of density-

normalized events

t-SNE  T-distributed stochastic neighbor embedding

TAM  Tumor-associated macrophage

TME  Tumor microenvironment

TPP  Cocktail including TNFα, Pam3CSK4, and 

prostaglandin E2

Treg  Regulatory T cell

viSNE  Visualization of t-distributed stochastic neigh-

bor embedding

Introduction

The three most common B-cell lymphomas are difuse large 

B-cell lymphoma (DLBCL), follicular lymphoma (FL), 

and classical Hodgkin lymphoma (HL). The abundance of 

immune cell subsets varies greatly across these B-lymphoma 

tumors, and T cells, dendritic cells (DC), and tumor-associ-

ated macrophages (TAM) from the tumor microenvironment 

(TME) have all been implicated in disease pathogenesis [1].

Contrasting roles have been deined for DCs and mac-

rophages in B-cell lymphomas. In FL, HL, and DLBCL, 

plasmacytoid DCs (pDC),  CD83pos myeloid DCs, and 

 CD1apos DCs, respectively, were correlated with better 

prognosis, suggesting that DCs are not tolerogenic in lym-

phoma and may act against the malignant cells [2–4]. In 

contrast, TAMs have been described as “M2-like”, because 

these cells can share protein expression proiles and sup-

pressive functions with macrophages polarized with IL-4 

[5]. However, highly suppressive macrophages obtained 

in  vitro also display contrasting phenotypes from IL-4 

polarized “M2-like” cells [6], and so the deprecated term 

“M2” is not interchangeable with the functional descrip-

tion “suppressor cell”. TAMs have historically been deined 

using CD68 and/or CD163 and characterized according to 

immunomodulatory functions, which include production of 

immunosuppressive cytokines, arginase 1, and indoleamine 

2,3-dioxygenase (IDO) [5]. Although TAMs have been asso-

ciated with immunomodulation in some solid tumor types, 

their functional role has not yet been systematically deined 

within the lymphoma microenvironment.

In DLBCL and HL, we and others have observed increase 

in circulating MDSC (myeloid-derived suppressor cells) that 

were correlated with poor prognosis [7, 8]. Furthermore, 

murine models of solid tumors have demonstrated that 

MDSCs can diferentiate into TAMs at the tumor site [5, 9, 

10]. The heterogeneous phenotypes of TAMs have recently 

begun to be characterized in human tumors using high-

dimensional approaches [11-13]. In DLBCL, FL, and HL, 

TAMs were traditionally deined using less than ive fea-

tures, characterized as  CD68pos or  CD68posCD163pos, and 

interrogated for prognostic signiicance [14-20]. However, 

contrasting and incompatible correlations with clinical out-

comes were reported for ostensibly the same TAM popula-

tions, suggesting that identifying TAMs only as  CD68pos, 

 CD163pos, or  CD68posCD163pos is insuicient [21]. Notably, 

these studies also difered in treatments [21], such as inclu-

sion or not of anti-CD20 therapy, but it is unlikely to fully 

explain the diametrically opposed functions reported for the 

TAMs identiied by comparable low-dimensional methods.

Herein, we used high-dimensional mass cytometry to 

decipher the myeloid compartment in lymphoma and to 

determine which TAM phenotypes were associated with 

DLBCL, FL, or HL lymphoma tumor type. In addition, 

phenotypes of other tumor-iniltrating immune cells were 

also characterized by the mass cytometry antibody panel. A 

central goal of the study was to further test whether CD163 

and/or CD68 expression were suicient to identify TAMs 

in B-cell lymphomas and to identify additional proteins that 

might be valuable for tracking these cells. DLBCLs, FLs, 

HLs, and reactive healthy tissues were analyzed with a panel 

of more than 32 antibodies and an analysis pipeline was vali-

dated using ex vivo models of myeloid maturation [22]. This 

approach allowed objective comparisons of TAM subsets 

between lymphomas and with healthy tissue and revealed 

that abnormal, phenotypically distinct macrophages were 

present in each of the three studied lymphoma types.

Material and methods

Tissue samples

Twenty-two tissues samples were analyzed, including cells 

from 16 lymphoma patients (n = 7 DLBCL, n = 2 FL, n = 7 

HL) and 6 control samples of reactive lymphoid hyperplasia 

with no evidence of malignant disease (HD). Tissue from 

patients was acquired with informed consent in accordance 

with local institutional review and the Declaration of Hel-

sinki. With one exception, all tissue samples were obtained 

at diagnosis, before any treatment. The exception, patient 

sample DLBCL#1, was obtained at relapse 1 year after the 

initial diagnosis and following treatment, which included 

anti-CD20. Diagnoses were performed during the routine 

worklow by trained hematopathologists. Viable cell suspen-

sions were prepared using a mechanical dissociation (Gen-

tleMacs dissociator, Miltenyi Biotec, Bergisch Gladbach, 
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Germany), then cells were cryopreserved in FBS (Life Tech-

nologies, Grand Island, NY, USA) containing 12% DMSO 

(Fischer Scientiic, Fair Lawn, NJ, USA).

Antibodies, cell labeling and mass cytometry 
analysis

Antibodies conjugation, cell labeling, and mass cytometry 

analysis steps were performed as previously published [22]. 

Briely, puriied antibodies were purchased from Biolegend 

(San Diego, CA, USA) or Immunotech (Marseille, France) 

and were labeled using MaxPar DN3 labeling kits according 

to protocol (Fluidigm, San Francisco, CA, USA). Antibod-

ies from Miltenyi Biotec (Bergisch Gladbach, Germany) or 

R&D systems (Minneapolis, MN, USA) were labeled with 

FITC (luorescein isothiocyanate), PE (phycoerythrin), or 

APC (allophycocyanin) (Table S1). Metal-conjugated pri-

mary antibodies as well as secondary antibodies targeting 

FITC, PE, or APC were purchased from Fluidigm. After 

thawing, cells were incubated with a viability reagent (cispl-

atin, 25 μM; Enzo Life Sciences, Farmingdale, NY, USA) as 

previously described [23]. Then, 3 × 106 cells were washed 

in phosphate-bufered saline (PBS, HyClone Laboratories, 

Logan, UT, USA) containing 1% bovine serum albumin 

(BSA, Fisher Scientiic, Fair Lawn, NJ, USA) and stained 

for 30 min in 50 μL PBS and 1% BSA containing a master 

mix of the antibodies used for surface staining (Table S1). 

After washing, cells were stained with an anti-FITC metal-

tagged antibody. Then, cells were washed twice in PBS and 

1% BSA and before ixation with 1.6% paraformaldehyde 

(PFA, Electron Microscopy Sciences, Hatield, PA, USA). 

Cells were washed once in PBS and permeabilized by resus-

pending in ice cold methanol. After incubating overnight 

at − 20 °C, cells were washed twice with PBS and 1% BSA. 

Cells were then stained with intracellular antibodies. Finally, 

cells were stained with anti-PE and anti-APC metal-tagged 

antibody. After washing, cells were stained with an irid-

ium DNA intercalator (Fluidigm) for 20 min at room tem-

perature. Finally, cells were resuspended in 1 × EQ™ Four 

Element Calibration Beads (Fluidigm). Analysis was per-

formed on a CyTOF 1.0 mass cytometer (Fluidigm) at Van-

derbilt University. Samples were collected in four batches 

(Table S2). After acquisition and before analysis, all samples 

were normalized across batches with EQ™ Four Element 

Calibration beads as previously described [24]. Absence of 

batch efect was checked by visualization of viSNE from 

each run of analysis (Figure S1). Raw mass cytometry data 

are accessible at Flow Repository (FR-FCM-Z2CA).

In vitro polarization of macrophages

We compared the phenotype of the myeloid modules to 

in vitro polarized macrophages already published by our 

group [22]. Briely, macrophages were generated by stimu-

lating monocytes with M-CSF (macrophage-colony stim-

ulating factor, 50 ng/mL; Cell Signaling, Danvers, MA, 

USA) for 3 days, as previously described [6]. Then, the 

macrophages were further polarized for 3 days, with IL-4, 

IL-10 (10 ng/mL each; Peprotech, Rocky Hill, NJ, USA), 

or TPP cocktail including TNFα (10 ng/mL; Millipore-

Sigma, St Louis, MA, USA), the toll-like receptor 2 agonist 

Pam3CSK4 (100 ng/mL; Invivogen, San Diego, CA, USA) 

and, prostaglandin E2 (1 µg/mL, MilliporeSigma). MDSCs 

were derived from monocytes cultured for 4 days with GM-

CSF (granulocyte macrophage-colony stimulating factor, 

40 ng/mL; Peprotech,) and G-CSF (granulocyte-colony stim-

ulating factor, 40 ng/mL; Peprotech). Before hierarchical 

cluster analysis, raw iles from the polarization experiments 

were normalized with tissues samples with EQ™ Four Ele-

ment Calibration Beads as previously described [24].

Data processing and analysis

Data analysis was performed using the worklow previ-

ously developed (Figure S2) [22, 25, 26]. Briefly, raw 

median intensity values were transformed to a hyperbolic 

arcsine (arcsinh) scale with a cofactor of 5, then analysis 

was performed using Cytobank software (Beckman Coul-

ter, Brea, CA, USA) [27]. Each ile was pre-gated as is 

standard in the ield for single, viable cells, as deined by 

cisplatin (viability) and iridium (nucleic acid). Then, the 

viSNE (visualization of t-distributed stochastic neighbor 

embedding, t-SNE) was performed to identify cell types. 

The default settings were used to create the t-SNE map (per-

plexity = 30, iterations = 1000, theta = 0.5) and all channels 

in which antibodies were used were included in mapping. 

On the t-SNE map, B-cell (B;  CD19posCD3neg), CD4 T-cell 

(TCD4;  CD3posCD8neg), CD8 T-cell (TCD8;  CD3posCD8pos), 

NK cell (NK;  CD45RAposCD16posCD3neg), and myeloid cell 

(My;  CD3negCD19neg, either  CD14pos,  CD36pos,  CD123pos, 

or  CD11cpos) populations were gated. These populations 

were exported as separate low cytometry standard iles 

(fcs). Myeloid cells were concatenated in a single fcs ile 

containing 55,066 events (Table S2). Each cell was iden-

tiied in the fcs ile with the ID of the tissue of origin. A 

new, common t-SNE map was created and then clustering 

was performed by SPADE (spanning-tree progression of 

density-normalized events) using 200 cluster nodes, and 

clustering on the t-SNE1 (t-distributed stochastic neighbor 

embedding) and t-SNE2 channels to objectively and compu-

tationally separate apparent myeloid cell subsets. Nodes with 

fewer than ten cells were discarded. Modules were identi-

ied by hierarchical clustering of mean marker intensity on 

each SPADE cluster representing a phenotypically distinct 

myeloid cell population.
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Each fcs file containing T lymphocytes was ana-

lyzed by a similar SPADE analysis using 50 clustering 

nodes and clustering on the t-SNE1 and t-SNE2 chan-

nels. The following cell clusters were deined by SPADE: 

Tregs  (CD3posCD8negCD25posCD127low), naïve CD4 T 

cells (T4N;  CD3posCD8negCD45RAposCCR7pos), naïve 

CD8 T cells (T8N;  CD3posCD8posCD45RAposCCR7pos), 

c e n t r a l  m e m o r y  C D 4  T  c e l l s  ( T 4 C M ; 

 CD3posCD8negCD45RAnegCCR7pos), central memory 

CD8 T cells (T8CM;  CD3posCD8posCD45RAnegCCR7pos), 

e f fe c t o r  m e m o r y  C D 4  T  c e l l s  ( T 4 E M ; 

 CD3posCD8negCD45RAnegCCR7neg), effector memory 

CD8 T cells (T8EM;  CD3posCD8posCD45RAnegCCR7neg), 

effector memory  CD45RApos CD4 T cells (T4EMRA; 

 CD3 posCD8 negCD45RA posCCR7 neg) ,  and  ef fec-

tor memory  CD45RApos CD8 T cells (T8EMRA; 

 CD3posCD8posCD45RAposCCR7neg).

The main parameters deining the lymphoma types were 

deined on a biaxial plot analysis using a matrix of the fre-

quencies for each cell subset (STATA 13, StataCorp, College 

Station, TX, USA).

Multiplex immunohistochemistry (mIHC)

Samples were ixed in 10% bufered formalin, embedded in 

parain and processed for routine histopathological examina-

tion. For quadruple immunoluorescence staining, 4-µm-thick 

sections were loaded on the Ventana Discovery ULTRA (Ven-

tana Medical Systems, Tucson, AZ, USA). After dewax and 

pretreatment, slides were incubated with primary antibodies 

CD68 (clone KP-1, Ventana), CD206 (polyclonal, Abcam, 

Cambridge, UK), CD16 (clone SP175, Ventana) and S100A9 

(Clone EP185, Bio SB, Santa Barbara, CA, USA) or CD163 

(clone MRQ-26, Ventana). Primary antibodies were visual-

ized using the OmniMap-HRP (Horse radish peroxidase con-

jugated anti-rabbit, anti-mouse) secondary system and tyra-

mide-conjugated luorophore kits FAM, Rhodamin6G, Red 

610 and Cy5 (Ventana). Counterstain was performed using 

Hoechst 33342 (Thermo Fisher Scientiic, Waltham, MA, 

USA). Whole slides of mIHC-stained PBL were scanned 

using Panoramic digital slide scanner (3DHISTECH, Buda-

pest, Hungary) equipped with appropriate ilters sets [28].

Statistical analysis

Statistical analyses were performed with GraphPad Prism 

5.0 software (GraphPad Software, San Diego, CA, USA). 

A Mann–Whitney test and Spearman correlation were used 

to compare diferences between groups. For correlations 

between immune cell populations, matrix calculations were 

performed between frequencies of cell subsets (in column) 

and samples (in row), for each type of sample (FLBCL, HL, 

or HD). A Spearman correlation was then calculated for each 

cell subset. For all statistical tests, p < 0.05 was considered 

statistically signiicant.

Results

Mass cytometry delineated T, NK, and myeloid cells 
within B-lymphoma tumor and healthy tissues

To dissect the heterogeneity of the tumor microenvironment, 

tumors from DLBCL (n = 7), FL (n = 2), or HL (n = 7) were 

compared to each other and reactive lymph node tissue (HD, 

n = 6). Patients’ characteristics are summarized in Table 1. A 

total of 1,863,184 cells were analyzed (Table S2). For each 

sample, B  (CD19posCD3neg), TCD4  (CD3posCD8neg), TCD8 

 (CD3posCD8pos), NK  (CD45RAposCD16posCD3neg), and 

myeloid cells (My,  CD3negCD19neg and  CD14pos, or  CD36pos, 

or  CD123pos, or  CD11cpos) were deined on a viSNE map 

(Fig. 1a). B cells were the most abundant population in DLBCL 

and FL samples (median frequency at 65.5% and 56.7%, respec-

tively) when compared to HL and HD samples (median fre-

quency at 35.2% and 39.2%, respectively) (Fig. 1b). CD4 T 

lymphocytes were reduced in DLBCL (median at 21.9% vs 

32.2%, 37.8%, and 39.5% for FL, HL, and HD, respectively). 

CD8 T lymphocytes were observed at a median frequency of 

9.4%, 10.4%, 19.2%, and 16.2%, for DLBCL, FL, HL, and HD, 

respectively. NK cells were rarely detected amongst all tumor 

types (median frequency between 0 and 0.5%). Finally, mye-

loid cells were detected at low frequencies (median frequency 

between 0.6 and 4.2%) in all samples analyzed.

Multiple TAM subsets were increased in lymphomas

The in-depth analysis began with the myeloid compart-

ment. The mass cytometry panel was speciically designed 

to recognize and deeply characterize myeloid cell types and 

polarization states within monocytes, TAMs, and DCs [22]. 

Jointly, 55,066 myeloid cells  (CD3negCD19neg and  CD14pos, 

or  CD36pos, or  CD123pos, or  CD11cpos) from 22 tissue sam-

ples (as deined in Fig. 1a) were analyzed from reactive and 

lymphoma samples (Table S2) using viSNE analysis (Figure 

S3a). This analysis followed the single-cell methods devel-

oped previously for canonically polarized myeloid cell subsets 

[26]. Median marker expression within clusters obtained by 

SPADE was visualized by hierarchical clustering (Fig. 2a, 

Figure S3b, and Figure S3c). Eight modules were deined, 

including cDC (classical dendritic cells), pDC, and six popu-

lations of macrophages (Mac 1–Mac 6) (Fig. 2a and Figure 

S2b). Interestingly, the relative distribution of myeloid subsets 

was diferent for DLBCLs and HLs when compared to HDs. 

DLBCL and HL displayed higher than normal macrophage 

frequencies (within the myeloid cell population, median 

frequencies were 60.5% for DLBCL and 72.5% in HL vs. 
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23.4% in healthy, p < 0.05) and lower pDC frequencies (0% 

in DLBCL and 27.5% in HL vs. 76.4% in healthy, p < 0.05) 

(Fig. 2b). Furthermore, macrophage modules (Mac1–Mac6) 

were also diferentially expressed between lymphomas and 

reactive nodes (Fig. 2c). DLBCLs contained populations 

Mac1 (4 cases out of 7) or Mac5 (2 cases out of 7). One 

DLBCL patient’s tumor contained a mix of computationally 

identiied cDC, Mac1, Mac2, and Mac4 cell subsets. In con-

trast, FL patient’s tumors contained a mix of cDC, Mac1, and 

Mac4 and, variably, Mac5. HLs included Mac1, Mac3, and 

Mac6. Of note, Mac3 and Mac6 were present only in HLs 

(Fig. 2c). In HDs, pDC represented the majority of myeloid 

modules, except for one case highly enriched in Mac2.

Next, the phenotype of these modules was analyzed across 

lymphomas. In DLBCL, the Mac1 module expressed high 

amounts of CD14, CD32, CD64, HLA-DR, CD11b, CCR2; 

S100A9 (S100 calcium-binding protein A9), and CD163, 

whereas Mac5 expressed CD32, HLA-DR, Slan (6-Sulfo 

LacNAc), and CD45RA (Fig. 3a). In HL, Mac 1 was positive 

for CD14, CD32, CD64, CD11b, CCR2, and S100A9; Mac3 

cluster expressed CD32, HLA-DR, CD11b, and S100A9; 

inally, Mac6 expressed CD16 and was HLA-DRlow (Fig. 3a). 

In DLBCL, CD163 expression by TAMs was conirmed by 

multiplex IHC (mIHC) (Fig. 3b). Some TAMs expressed also 

CD16, but few cells co-expressed CD16/CD163 or CD16/

S100A9. In HL,  CD16pos TAMs were evidenced by mIHC, 

and signiicant expression of S100A9 was also noted (Fig. 3b), 

as in FL (Figure S4). The Mac1 subset found in HL expressed 

less CD163 than in DLBCL. The Mac3 population in HL 

expressed high levels of S100A9, whereas Mac6 expressed 

high levels of CD16 (Fig. 3b, c).

Finally, the phenotype of Mac clusters iniltrating human 

lymphomas was compared to that of in vitro polarized mac-

rophages or MDSCs [22, 26]. Polarized macrophage signa-

tures were obtained previously under various stimuli (M_IL4, 

M_IL10, and M_TPP. Mac1 and M_IL10 shared similar 

phenotype, in particular regarding the expression of CCR2 

(Fig. 3d). The Mac4 cluster phenotypically resembled the M_

IL4 phenotype (in particular demonstrating similar expression 

patterns of CD64, CD163, CD16, HLA-DR, and CD274) as 

well as in vitro-derived MDSC (in particular showing similar 

expression levels of CD86). Finally, Mac3, Mac5, and Mac6 

were most closely aligned with M_TPP polarized cells. In par-

ticular, the Mac3 subset expressed relatively high expression 

of S100A9 consistent with in vitro TPP polarization (Fig. 3d 

and Figure S5).

Table 1  Patients’ characteristics

DLBCL difuse large B-cell lymphoma, ABC activated B cell, GC germinal center, cHL classical Hodgkin 

lymphoma, NSHL nodular sclerosis Hodgkin lymphoma, LRCHL lymphocyte rich cHL, MCHL mixed cel-

lularity Hodgkin lymphoma, LN lymph node

Disease/sample Patient ID Age at diagno-

sis (years)

Gender 

(female/

male)

Cell of origin (DLBCL) or 

subtype (HL) or grade (FL)

Tissue

DLBCL #1 76 F ABC LN

#2 66 M GC LN

#3 58 M – LN

#4 57 F ABC LN

#5 56 F ABC LN

#6 65 F GC Thyroid

#7 64 F GC LN

HL #1 26 M NSHL LN

#2 49 M LRCHL LN

#3 48 M MCHL LN

#4 68 M MCHL LN

#5 22 M NSHL LN

#6 50 M cHL LN

#7 49 F NSHL LN

FL #1 48 M 3a LN

#2 47 F 1–2 LN

HD #1 50 M – LN

#2 35 M – LN

#3 36 F – LN

#4 26 M – LN

#5 35 F – LN

#6 52 F – Tonsil
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T-lymphocyte subsets are speciic to lymphoma 
subtypes

Analys i s  o f  T-ce l l  subset s  inc luded  Tregs 

 (CD3posCD8negCD25posCD127low), naïve T cells (T4N and 

T8N;  CD45RAposCCR7pos), central memory T cells (T4CM 

and T8CM,  CD45RAnegCCR7pos), efector memory T cells 

(T4EM and T8EM;  CD45RAnegCCR7neg), and efector mem-

ory cells (T4EMRA and T8EMRA;  CD45RAposCCR7neg) 

that were deined by SPADE analysis (Fig. 4a). DLBCL 

samples were characterized by high frequencies of T4CM, 

T8CM and T8EM when compared to HLs or HDs (p < 0.05), 

whereas T4N and T4EMRA frequencies were low when 

compared to HDs (p < 0.05). HLs were deined by low fre-

quencies of T4CM, T8CM, and T4EMRA when compared 

to DLBCLs or HLs (p < 0.05). No signiicant diference was 

observed for frequencies of Tregs when comparing T-cell 

populations across lymphoma types (Fig. 4b). Further, a 
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Fig. 1  Myeloid (My), T, and NK cells are detected by mass cytom-
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CD16, CD19, CD14, CD123, CD11c, and HLA-DR are shown. b 

Cell subsets frequencies among all viable cells are shown for DLBCL 

(n = 7, red), FL (n = 2, green), HL (n = 7, blue), and HD (n = 6, black)
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greater frequency of PD-1pos (CD279/programmed cell 

death protein 1) T4EM, T4CM, and T8EM cells iniltrated 

DLBCL compared to HLs (p < 0.05) (Fig. 4c).

Immune landscapes deine lymphoma subtypes

The main cell populations categorizing the samples were 

deined by biaxial analysis (Figure S6) and, overall, lym-

phoma samples were well separated from HDs (p < 0.05). 

Within the TME, DLBCL samples were characterized 

by a high abundance of Mac1, Mac5, T8EM, and T4EM, 

whereas FLs had high counts of Mac4 and cDC and HLs 

exhibited a high abundance of Mac6, T8EM, and T4EM. 

Finally, HDs were characterized by high frequencies of 

pDC, T4N, T8N, and TEMRA (Figure S6). Finally, to 

establish relationships between immune cell populations 

across lymphoma subtypes, the correlation of quantiica-

tion of these populations across lymphoma subtypes was 

calculated (Fig. 5). In DLBCL samples, the observed pat-

tern included an increase in Mac5, T8CM, T8EM, Treg, 

and T4EM and T8EM expressing PD-1 for two patients (#1 

and #2) out of seven. On the other hand, for ive DLBCL 

patients (#3, #4, #5, #6, and #7) out of seven, Mac1 and 

T4EM were inversely correlated with T4EM expressing 

PD-1. Interestingly, Mac1 and Mac5 were inversely cor-

related (Fig. 5). For HL samples, three diferent patterns 

were detected: (1) Mac6, PD-1pos T8EM, and cDC for two 

patients (#3 and #4) out of seven; (2) Mac3 and Treg cells 

were increased in one HL patient (#1); (3) abundance of 

Mac1, pDC, and T4CM was correlated in four patients 

(#2, #5, #6, and #7) out of seven. These patterns were not 

detected in HD samples. Finally, the mixed cellularity 

Hodgkin lymphoma was associated with the Mac6 mod-

ule, T8EM expressing PD-1, and cDC (HL #3 and #4). 

This Mac6 module was not observed in other HL subtypes 

or other diseases (Table 1 and Fig. 5).

Discussion

Herein, mass cytometry signiicantly improved our under-

standing of the contrasting macrophage phenotypes in 

DLBCL, FL, and HL tumors. The results here revealed 

distinct features of macrophages that were associated with 

B-lymphoma tumor microenvironments. Furthermore, these 

results emphasize that the phenotypes of macrophages in 

lymphoma microenvironments are linked to the phenotypes 

of T cells in the same tumors. These results suggest that 

tumors contain distinct immune environments and thus that 

diferent immunotherapy strategies will be required to target 

the distinct macrophage and T-cell subsets observed here.

The mass cytometry panel used here was previously val-

idated in peripheral blood and bone marrow from healthy 

tissues and in an ex vivo model of myeloid diferentiation 

[22]. Increase in phenotypically distinct macrophage sub-

sets and decrease in pDCs were observed in lymphoma 

samples when compared to healthy tissues. Systematic 

analysis identiied six macrophages modules represent-

ing stable diferences in TAM phenotypes observed across 

lymphoma tumor types. HD macrophages were revealed 

here to be especially  CD64high and  CD163low. DLBCL mac-

rophages were  CD163high,  CD64high,  CD32high,  CCR2high, 

 CD120ahigh, and  S100A9high. FL macrophages were 

 CD206high,  CD86high, and  CD274high. Finally, HL mac-

rophages were  CD163high,  CD64high,  CD32high,  CCR2high, 

 S100A9high, and  CD16high HLA-DRlow. While CD163 and 

CD206 were deined as TAM markers in renal cell carci-

noma [11], only one of these markers was expressed in 

DLBCL, FL, or HL. Interestingly, the Mac5 module was 

characterized by the expression of Slan, which has been 

previously observed in DLBCL [29]. Besides, TAMs 

from DLBCLs and HLs were, respectively,  S100A9high 

and  S100A9high HLA-DRlow, a hallmark of MDSCs [30-

34]. When compared to ex vivo polarized macrophages 

analyzed with the same panel of antibodies [22], TAMs 

from DLBCL were most similar to IL-10 polarized mac-

rophages M_IL10  (CD32high  CD14high  CCR2high  CD163high 

 CD64high  CD33high) [22, 26]. TAMs from FLs were phe-

notypically similar to IL-4 polarized macrophages M_IL4 

 (CD274high  CD86high). TAMs from HLs were similar to 

M_TPP and in vitro-derived MDSC  (CD32high  CD64high 

 CCR2high  CD206high HLA-DRlow [22]. In agreement with 

previous studies, TAMs from cHL expressed more PD-L1 

(CD274/ programmed death-ligand 1) than in DLBCL 

(p < 0.01, data not shown) [35]. The results of this study 

Fig. 3  Myeloid subsets exhibit speciic inlammatory and/or sup-

pressive phenotypes in the lymphoma TME. a Marker expression for 

Mac modules in DLBCL and HL. b mIHC staining for DLBCL and 

HL. Bottom right of each panel: Dot plot showing the coexpression 

of markers for Mac modules deined in Fig. 2. c Top: counts of cell 

from the mIHC staining for DLBCL (n = 3) and HL (n = 3) and bot-

tom: percentage of coexpression. In each panel, expression of mark-

ers deined by mass cytometry for various Mac subsets. d Heat map 

after hierarchical clustering for Mac clusters involved in lymphoma 

(in red) and polarized macrophages (in black). Polarized macrophage 

signatures were obtained previously under various stimuli (M_IL4, 

M_IL10, and M_TPP) [22]
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CD4 or CD8 cells are shown for DLBCL (n = 7, red), FL (n = 2, 
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indicate that TAMs difer across lymphomas and more than 

just CD163 will be needed to track and characterize these 

cells. A high-dimensional approach is well suited to track-

ing these cells, as more than ten antibodies were needed 

to efectively capture the lymphoma-speciic features of 

TAMs. Multiple TAM phenotypes coexisted in the typical 

sample studied here. This might explain why bulk analysis 

of TAMs from DLBCL samples simultaneously identi-

ied both the opposing M1 and M2 signatures [36]. This 

might also explain the discrepancies in correlation between 

TAMs and outcomes [21].

T-cell subsets were also revealed and described by the 

high-dimensional approach. In DLBCL, an increase in 

T4CM, T8CM and T8EM expressing PD-1high was noted. 

In contrast, and as previously published, few T-cell subsets 

from HLs were observed to express PD-1 [37]. An increase 

of both efector memory and Tregs in cHL relecting a pro-

inlammatory and suppressive TME was recently shown 

[38]. Further, PD-1pos T-cell subsets correlated with sur-

vival in FL [39].

Altogether, 17 distinct subsets of immune cells were 

characterized by the single mass cytometry panel here. 

The DLBCL- and HL-specific phenotypes of lymphoma-

infiltrating cells were not detected in healthy donor sam-

ples. While the results here represent an initial study 

with a relatively small patient cohort, the cell phenotypes 

were distinct and consistent enough to reveal lymphoma-

specific cell types. Most striking was the Mac6 module 

that was only observed in mixed cellularity Hodgkin 

lymphoma. To our knowledge, this is the first immune 

profiling of the myeloid compartment in lymphoma 

tumors by mass cytometry. Prior work has character-

ized T cells and B cells in FL, DLBCL, and HL using 

mass cytometry [38, 40, 41] and characterized myeloid 

cells in lung and breast cancer [11, 13]. The resolution 

of the complex, heterogeneous lymphoma microenviron-

ment by mass cytometry was striking when compared to 

prior low-dimensional studies measuring fewer than eight 

markers. The results here indicate that future studies of 

lymphoma should be single cell, high dimensional (meas-

uring S100A9, CCR2, CD36, Slan, CD32, CD3, CD14, 

HLA-DR, CD11b, CD11c, CD45RA, CD163, CD68, 

and CD64), and collect approximately 100,000  CD45pos 

immune cells to effectively describe macrophages in the 

tumor microenvironment.

There are some key considerations for interpreting 

the results from this study. First, samples were obtained 

after mechanical dissociation only, which may preferen-

tially recover some cell subsets [42], however, confirma-

tion of our findings via mIHC would suggest that this 

possibility was kept to a minimum. Second, the patient 

cohort represents a pilot study designed to reveal mark-

ers and cells to track in future studies. Significantly more 

patients would be needed to correlate tumor-associated 

immune cells with well-established histological subtypes 

or patient outcomes. Third, the mass cytometry panel was 

designed and validated for myeloid cells and not for T 

cells or other immune subsets. However, there were still 

at least seven markers present that were useful in studying 

T cells, including CD3, CCR7, CD45RA, CD25, CD127, 

PD-1, and HLA-DR. To give a broad overview of the 

TME, it will be interesting to target various myeloid-, 

stroma-, and T-cell subsets but also to evaluate various 

immune checkpoints, transcription factors, or signaling 

pathways. Notably, the complex signature revealed here 

made it not feasible to sort for TAM subsets or otherwise 

isolate cells for functional assays. Future studies should 

seek to define minimal markers for effective isolation 

of cells for functional studies. Finally, while suspension 

mass cytometry has substantial benefits for tumor analy-

sis [43], it does necessarily sacrifice tissue architecture 

and positional information. It will be useful in future 

studies to get more information on the spatial distribu-

tion of cells and cell-to-cell contact. Indeed, recruitment 

and  PDL1pos TAM and PD-1pos T cell subsets have been 

shown to be in close contact to Reed–Sternberg cells [37]. 

Thus, it will be interesting to explore TME in lymphomas 

with imaging mass cytometry and using the panel pro-

posed here [44, 45].

In conclusion, this study provided a starting mac-

rophage atlas for B-cell lymphomas and demonstrated the 

usefulness of mass cytometry approaches in deciphering 

the TME and prioritizing markers and cell types for future 

studies. Notably, canonical macrophage markers CD163 

nor CD68 cannot be used solely to define TAMs from 

lymphomas and future studies should include S100A9, 

CCR2, CD36, Slan, CD32 along with core macrophage 

markers. Going forward, these results allow a better 

understanding of the biology of tumor macrophages 

which could be used to optimize the development and 

application of cancer immunotherapies.
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and of the Comité de Protection des Personnes for samples collected 

through the Cevi collection [approval number DC-2013-1783].

Informed consent A written consent was obtained from patients before 

qualiication for research in the CRB or the CeVI collection. The con-

sent was for the use of their specimens and data for research and for 
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