D. W. Scott and R. D. Gascoyne, The tumour microenvironment in B cell lymphomas, Nat Rev Cancer, vol.14, pp.517-534, 2014.

D. Galati, G. Corazzelli, D. Filippi, R. Pinto, and A. , Dendritic cells in hematological malignancies, Crit Rev Oncol Hematol, vol.108, pp.86-96, 2016.

C. S. Tudor, H. Bruns, and C. Daniel, Macrophages and dendritic cells as actors in the immune reaction of classical Hodgkin lymphoma, PLoS One, vol.9, p.45, 2014.

K. C. Chang, G. C. Huang, D. Jones, and Y. H. Lin, Distribution patterns of dendritic cells and T cells in difuse large B-cell lymphomas correlate with prognoses, Clin Cancer Res, vol.13, pp.6666-6672, 2007.

A. Mantovani, F. Marchesi, and A. Malesci, Tumour-associated macrophages as treatment targets in oncology, Nat Rev Clin Oncol, vol.14, pp.399-416, 2017.

J. Xue, S. V. Schmidt, and J. Sander, Transcriptome-based network analysis reveals a spectrum model of human macrophage activation, Immunity, vol.40, pp.274-288, 2014.

O. Marini, C. Spina, and E. Mimiola, Identiication of granulocytic myeloid-derived suppressor cells (G-MDSCs) in the peripheral blood of Hodgkin and non-Hodgkin lymphoma patients, Oncotarget, vol.7, pp.27676-27688, 2016.

I. Azzaoui, F. Uhel, and D. Rossille, T-cell defect in difuse large B-cell lymphomas involves expansion of myeloid-derived suppressor cells, Blood, vol.128, pp.1081-1092, 2016.

V. Kumar, S. Patel, E. Tcyganov, and D. I. Gabrilovich, The nature of myeloid-derived suppressor cells in the tumor microenvironment, Trends Immunol, vol.37, pp.208-220, 2016.

S. Ugel, D. Sanctis, F. Mandruzzato, S. Bronte, and V. , Tumorinduced myeloid deviation: when myeloid-derived suppressor cells meet tumor-associated macrophages, J Clin Investig, vol.125, pp.3365-3376, 2015.

S. Chevrier, J. H. Levine, and V. Zanotelli, An immune atlas of clear cell renal cell carcinoma, Cell, vol.169, pp.736-738, 2017.

J. Wagner, M. A. Rapsomaniki, and S. Chevrier, A single-cell atlas of the tumor and immune ecosystem of human breast cancer, 2019.

Y. Lavin, S. Kobayashi, and A. Leader, Innate Immune landscape in early lung adenocarcinoma by paired single-cell analyses, Cell, vol.169, pp.750-757, 2017.

S. Riihijarvi, I. Fiskvik, and M. Taskinen, Prognostic inluence of macrophages in patients with difuse large B-cell lymphoma: a correlative study from a nordic phase II trial, Haematologica, vol.100, pp.238-245, 2015.

S. Hasselblom, U. Hansson, and M. Sigurdardottir, Expression of CD68 tumor-associated macrophages in patients with diffuse large B-cell lymphoma and its relation to prognosis, Pathol Int, vol.58, pp.529-532, 2008.

L. Shen, H. Li, and Y. Shi, M2 tumour-associated macrophages contribute to tumour progression via legumain remodelling the extracellular matrix in difuse large B cell lymphoma, Sci Rep, vol.6, p.30347, 2016.

D. Aldinucci, M. Celegato, and N. Casagrande, Microenvironmental interactions in classical Hodgkin lymphoma and their tumor growth, immune escape and drug resistance, Cancer Lett, vol.380, pp.243-252, 2016.

P. Greaves, A. Clear, and A. Owen, Deining characteristics of classical Hodgkin lymphoma microenvironment T-helper cells, Blood, vol.122, pp.2856-2863, 2013.

C. Steidl, T. Lee, and S. P. Shah, Tumor-associated macrophages and survival in classic Hodgkin's lymphoma, N Engl J Med, vol.362, pp.875-885, 2010.

D. Azambuja, Y. Natkunam, and I. Biasoli, Lack of association of tumor-associated macrophages with clinical outcome in patients with classical Hodgkin's lymphoma, Ann Oncol, vol.23, pp.736-742, 2012.

R. Kridel, C. Steidl, and R. D. Gascoyne, Tumor-associated macrophages in difuse large B-cell lymphoma, Haematologica, vol.100, pp.143-145, 2015.

M. Roussel, P. B. Ferrell, and A. R. Greenplate, Mass cytometry deep phenotyping of human mononuclear phagocytes and myeloid-derived suppressor cells from human blood and bone marrow, J Leukoc Biol, vol.102, pp.437-447, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01579828

H. G. Fienberg, E. F. Simonds, and W. J. Fantl, A platinumbased covalent viability reagent for single-cell mass cytometry, Cytom A, vol.81, pp.467-475, 2012.

R. Finck, E. F. Simonds, and A. Jager, Normalization of mass cytometry data with bead standards, Cytom A, vol.83, pp.483-494, 2013.

K. E. Diggins, P. B. Ferrell, and J. M. Irish, Methods for discovery and characterization of cell subsets in high dimensional mass cytometry data, Methods, vol.82, pp.55-63, 2015.

M. Roussel, T. Bartkowiak, and J. M. Irish, Picturing polarized myeloid phagocytes and regulatory cells by mass cytometry, Methods Mol Biol, pp.217-226, 1989.
URL : https://hal.archives-ouvertes.fr/hal-02153642

N. Kotecha, P. O. Krutzik, and J. M. Irish, Web-based analysis and publication of low cytometry experiments, Curr Protoc Cytom, 2010.

P. Gravelle, S. Péricart, and M. Tosolini, EBV infection determines the immune hallmarks of plasmablastic lymphoma, Oncoimmunology, vol.7, p.50, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02347569

W. Vermi, A. Micheletti, and G. Finotti, slan+ monocytes and macrophages mediate CD20-dependent B-cell lymphoma elimination via ADCC and ADCP, Can Res, vol.78, pp.3544-3559, 2018.

V. Bronte, S. Brandau, and S. Chen, Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards, Nat Commun, vol.7, p.12150, 2016.

P. Feng, K. Lee, and Y. Chang, CD14(+)S100A9(+) monocytic myeloid-derived suppressor cells and their clinical relevance in non-small cell lung cancer, Am J Respir Crit Care Med, vol.186, pp.1025-1036, 2012.

F. Zhao, B. Hoechst, and A. Dufy, S100A9 a new marker for monocytic human myeloid-derived suppressor cells, J Clin Investig, vol.136, pp.4595-4611, 2012.

P. Feng, C. Yu, and K. Chen, S100A9+ MDSC and TAM-mediated EGFR-TKI resistance in lung adenocarcinoma: the role of RELB, Oncotarget, vol.9, pp.7631-7643, 2018.

F. Vari, D. Arpon, and C. Keane, Immune evasion via PD-1/ PD-L1 on NK cells and monocyte/macrophages is more prominent in Hodgkin lymphoma than DLBCL, Blood, vol.131, pp.1809-1819, 2018.

R. Mccord, C. R. Bolen, and H. Koeppen, PD-L1 and tumorassociated macrophages in de novo DLBCL, Blood Adv, vol.3, pp.531-540, 2019.

C. D. Carey, D. Gusenleitner, and M. Lipschitz, Topological analysis reveals a PD-L1-associated microenvironmental niche for Reed-Sternberg cells in Hodgkin lymphoma, Blood, vol.130, pp.2420-2430, 2017.

F. Z. Cader, R. Schackmann, and X. Hu, Mass cytometry of Hodgkin lymphoma reveals a CD4+ regulatory T-cell-rich and exhausted T-efector microenvironment, Blood, vol.132, pp.825-836, 2018.

Z. Yang, H. J. Kim, and J. C. Villasboas, Mass cytometry analysis reveals that speciic intratumoral CD4+ T cell subsets correlate with patient survival in follicular lymphoma, Cell Rep, vol.26, pp.2178-2193, 2019.

C. E. Wogsland, A. R. Greenplate, and A. Kolstad, Mass cytometry of follicular lymphoma tumors reveals intrinsic heterogeneity in proteins including HLA-DR and a deicit in nonmalignant plasmablast and germinal center B-cell populations, Cytom B Clin Cytom, vol.92, pp.79-87, 2017.

M. D. Nissen, M. Kusakabe, and X. Wang, Single cell phenotypic proiling of 27 DLBCL cases reveals marked intertumoral and intratumoral heterogeneity, Cytom A, vol.9, p.2579, 2019.

N. Leelatian, D. B. Doxie, and A. R. Greenplate, Single cell analysis of human tissues and solid tumors with mass cytometry, Cytom B Clin Cytom, vol.92, pp.68-78, 2017.

A. M. Mistry, A. R. Greenplate, R. A. Ihrie, and J. M. Irish, Beyond the message: advantages of snapshot proteomics with single-cell mass cytometry in solid tumors, FEBS J, 2018.

C. Giesen, H. Wang, and D. Schapiro, Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry, Nat Methods, vol.11, pp.417-422, 2014.

Q. Chang, O. I. Ornatsky, and I. Siddiqui, Imaging mass cytometry. Cytom A, vol.91, pp.160-169, 2017.

, Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional ailiations