Y. Okabe and R. Medzhitov, Tissue biology perspective on macrophages, Nat Immunol, vol.17, pp.9-17, 2016.

A. Sica and A. Mantovani, Macrophage plasticity and polarization: in vivo veritas, J Clin Invest, vol.122, pp.787-95, 2012.

J. Xue, S. V. Schmidt, J. Sander, A. Draffehn, W. Krebs et al., Transcriptomebased network analysis reveals a spectrum model of human macrophage activation, Immunity, vol.40, pp.274-88, 2014.

D. M. Mosser and J. P. Edwards, Exploring the full spectrum of macrophage activation, Nat Rev Immunol, vol.8, pp.958-69, 2008.

A. Mantovani, S. Sozzani, M. Locati, P. Allavena, and A. Sica, Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes, Trends Immunol, vol.23, pp.549-55, 2002.

A. Mantovani, F. Marchesi, A. Malesci, L. Laghi, and P. Allavena, Tumour-associated macrophages as treatment targets in oncology, Nat Rev Clin Oncol, vol.14, pp.399-416, 2017.

E. Mitsi, R. Kamng'ona, J. Rylance, C. Solórzano, J. Reiné et al., Human alveolar macrophages predominately express combined classical M1 and M2 surface markers in steady state, Respir Res, vol.19, p.66, 2018.

K. Moganti, F. Li, C. Schmuttermaier, S. Riemann, H. Klüter et al., Hyperglycemia induces mixed M1/M2 cytokine profile in primary human monocytederived macrophages, Immunobiology, vol.222, pp.952-961, 2017.

S. K. Biswas, L. Gangi, S. Paul, T. Schioppa, A. Saccani et al., A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation), Blood, vol.107, pp.2112-2134, 2006.

S. Reinartz, T. Schumann, F. Finkernagel, A. Wortmann, J. M. Jansen et al., Mixed-polarization phenotype of ascites-associated macrophages in human ovarian carcinoma: correlation of CD163 expression, cytokine levels and early relapse, Int J Cancer, vol.134, pp.32-42, 2014.

S. Müller, G. Kohanbash, S. J. Liu, B. Alvarado, D. Carrera et al., Single-cell profiling of human gliomas reveals macrophage ontogeny as a basis for regional differences in macrophage activation in the tumor microenvironment, Genome Biol, vol.18, p.234, 2017.

E. Azizi, A. J. Carr, G. Plitas, A. E. Cornish, C. Konopacki et al., Single-Cell Map of Diverse Immune Phenotypes in the, Breast Tumor Microenvironment. Cell, vol.174, pp.1293-1308, 2018.

S. Chevrier, J. H. Levine, V. Zanotelli, K. Silina, D. Schulz et al., An Immune Atlas of Clear Cell Renal Cell Carcinoma, Cell, vol.169, pp.736-749, 2017.

, Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited

, Author Manuscript Published OnlineFirst on, 2020.

G. Raes, R. Van-den-bergh, D. Baetselier, P. Ghassabeh, G. H. Scotton et al., Arginase-1 and Ym1 are markers for murine, but not human, alternatively activated myeloid cells, J Immunol, vol.174, pp.6561-6562, 2005.

P. Jeannin, L. Paolini, C. Adam, and Y. Delneste, The roles of CSFs on the functional polarization of tumor-associated macrophages, FEBS J, vol.285, pp.680-99, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-01718654

A. Mantovani, A. Sica, S. Sozzani, P. Allavena, A. Vecchi et al., The chemokine system in diverse forms of macrophage activation and polarization, Trends Immunol, vol.25, pp.677-86, 2004.

A. J. Gentles, A. M. Newman, C. L. Liu, S. V. Bratman, W. Feng et al., The prognostic landscape of genes and infiltrating immune cells across human cancers, Nat Med, vol.21, pp.938-983, 2015.

L. Song, S. Asgharzadeh, J. Salo, K. Engell, H. Wu et al., Valpha24-invariant NKT cells mediate antitumor activity via killing of tumor-associated macrophages, J Clin Invest, vol.119, pp.1524-1560, 2009.

M. P. Smith, B. Sanchez-laorden, O. 'brien, K. Brunton, H. Ferguson et al., The immune microenvironment confers resistance to MAPK pathway inhibitors through macrophage-derived TNF?, Cancer Discov, vol.4, pp.1214-1243, 2014.

M. G. Vander-heiden, L. C. Cantley, and C. B. Thompson, Understanding the Warburg effect: the metabolic requirements of cell proliferation, Science, vol.324, pp.1029-1062, 2009.

S. Sun, H. Li, J. Chen, and Q. Qian, Lactic Acid: No Longer an Inert and End-Product of Glycolysis, Physiology (Bethesda), vol.32, pp.453-63, 2017.

F. Hirschhaeuser, U. Sattler, and W. Mueller-klieser, Lactate: a metabolic key player in cancer, Cancer Res, vol.71, pp.6921-6926, 2011.

X. Hu, M. Chao, and H. Wu, Central role of lactate and proton in cancer cell resistance to glucose deprivation and its clinical translation, Signal Transduct Target Ther, vol.2, p.16047, 2017.

E. Gottfried, L. A. Kunz-schughart, S. Ebner, W. Mueller-klieser, S. Hoves et al., Tumor-derived lactic acid modulates dendritic cell activation and antigen expression, Blood, vol.107, pp.2013-2034, 2006.

K. Fischer, P. Hoffmann, S. Voelkl, N. Meidenbauer, J. Ammer et al., Inhibitory effect of tumor cell-derived lactic acid on human T cells, Blood, vol.109, pp.3812-3821, 2007.

A. Angelin, L. Gil-de-gómez, S. Dahiya, J. Jiao, L. Guo et al., Foxp3 Reprograms T Cell Metabolism to Function in Low-Glucose, High-Lactate Environments, Cell Metab, vol.25, pp.1282-1293, 2017.

S. Romero-garcia, M. Moreno-altamirano, H. Prado-garcia, and F. J. Sánchez-garcía, Lactate Contribution to the Tumor Microenvironment: Mechanisms, Effects on Immune Cells and Therapeutic Relevance, Front Immunol, vol.7, p.52, 2016.

O. R. Colegio, N. Chu, A. L. Szabo, T. Chu, A. M. Rhebergen et al., Functional polarization of tumour-associated macrophages by tumour-derived lactic acid, Nature, vol.513, pp.559-63, 2014.

C. Carmona-fontaine, M. Deforet, L. Akkari, C. B. Thompson, J. A. Joyce et al., Metabolic origins of spatial organization in the tumor microenvironment, Proc Natl Acad Sci, vol.114, pp.2934-2943, 2017.

D. Laoui, E. Van-overmeire, D. Conza, G. Aldeni, C. Keirsse et al., Tumor hypoxia does not drive differentiation of tumor-associated macrophages but rather finetunes the M2-like macrophage population, Cancer Res, vol.74, pp.24-30, 2014.

S. A. Hobson-gutierrez and C. Carmona-fontaine, The metabolic axis of macrophage and immune cell polarization, Dis Model Mech, p.11, 2018.

L. Preisser, C. Miot, L. Guillou-guillemette, H. Beaumont, E. Foucher et al., IL-34 and macrophage colony-stimulating factor are overexpressed in hepatitis C virus fibrosis and induce profibrotic macrophages that promote collagen synthesis by hepatic stellate cells, Hepatology, vol.60, pp.1879-90, 2014.

J. Vandesompele, D. Preter, K. Pattyn, F. Poppe, B. Van-roy et al., Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes, Genome Biol, vol.3, p.34, 2002.

A. Brand, K. Singer, G. E. Koehl, M. Kolitzus, G. Schoenhammer et al., LDHA-Associated Lactic Acid Production Blunts Tumor Immunosurveillance by T and NK Cells, Cell Metab, vol.24, pp.657-71, 2016.

D. Duluc, Y. Delneste, F. Tan, M. Moles, L. Grimaud et al., Tumor-associated leukemia inhibitory factor and IL-6 skew monocyte differentiation into tumor-associated macrophage-like cells, Blood, vol.110, pp.4319-4349, 2007.

R. Pola?ski, C. L. Hodgkinson, A. Fusi, D. Nonaka, L. Priest et al., Activity of the monocarboxylate transporter 1 inhibitor AZD3965 in small cell lung cancer, Clin Cancer Res, vol.20, pp.926-963, 2014.

E. Izquierdo, V. D. Cuevas, S. Fernández-arroyo, M. Riera-borrull, E. Orta-zavalza et al., Reshaping of Human Macrophage Polarization through Modulation of Glucose Catabolic Pathways, J Immunol, vol.195, pp.2442-51, 2015.

C. Hernandez, P. Huebener, and R. F. Schwabe, Damage-associated molecular patterns in cancer: a double-edged sword, Oncogene, vol.35, pp.5931-5972, 2016.

D. C. Lacey, A. Achuthan, A. J. Fleetwood, H. Dinh, J. Roiniotis et al., Defining GM-CSF-and macrophage-CSF-dependent macrophage responses by in vitro models, J Immunol, vol.188, pp.5752-65, 2012.

N. Nagarsheth, M. S. Wicha, and W. Zou, Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy, Nat Rev Immunol, vol.17, pp.559-72, 2017.

D. Martínez, M. Vermeulen, E. Von-euw, J. Sabatté, J. Maggíni et al., Extracellular acidosis triggers the maturation of human dendritic cells and the production of IL-12, J Immunol, vol.179, pp.1950-1959, 2007.

K. Rajamäki, T. Nordström, K. Nurmi, K. Åkerman, P. T. Kovanen et al., Extracellular acidosis is a novel danger signal alerting innate immunity via the NLRP3 inflammasome, J Biol Chem, vol.288, pp.13410-13419, 2013.

P. Allavena, A. Sica, C. Garlanda, and A. Mantovani, The Yin-Yang of tumor-associated macrophages in neoplastic progression and immune surveillance, Immunol Rev, vol.222, pp.155-61, 2008.

F. O. Martinez, L. Helming, R. Milde, A. Varin, B. N. Melgert et al., Genetic programs expressed in resting and IL-4 alternatively activated mouse and human macrophages: similarities and differences, Blood, vol.121, pp.57-69, 2013.

P. Chomarat, J. Banchereau, J. Davoust, and A. K. Palucka, IL-6 switches the differentiation of monocytes from dendritic cells to macrophages, Nat Immunol, vol.1, pp.510-514, 2000.

B. C. Gliniak and L. R. Rohrschneider, Expression of the M-CSF receptor is controlled posttranscriptionally by the dominant actions of GM-CSF or multi-CSF, Cell, vol.63, pp.1073-83, 1990.

I. Brochériou, S. Maouche, H. Durand, V. Braunersreuther, L. Naour et al., Antagonistic regulation of macrophage phenotype by M-CSF and GM-CSF: implication in atherosclerosis, Atherosclerosis, vol.214, pp.316-340, 2011.

J. G. Conway, B. Mcdonald, J. Parham, B. Keith, D. W. Rusnak et al., Inhibition of colony-stimulating-factor-1 signaling in vivo with the orally bioavailable cFMS kinase inhibitor GW2580, Proc Natl Acad Sci, vol.102, pp.16078-83, 2005.

E. D. Foucher, S. Blanchard, L. Preisser, E. Garo, N. Ifrah et al., IL-34 induces the differentiation of human monocytes into immunosuppressive macrophages. antagonistic effects of GM-CSF and IFN?, PLoS ONE, vol.8, p.56045, 2013.

D. C. Lee, H. A. Sohn, Z. Park, S. Oh, Y. K. Kang et al., A lactate-induced response to hypoxia, Cell, vol.161, pp.595-609, 2015.

D. Saedeleer, C. J. Copetti, T. Porporato, P. E. Verrax, J. Feron et al., Lactate activates HIF-1 in oxidative but not in Warburg-phenotype human tumor cells, PLoS ONE, vol.7, p.46571, 2012.

K. Lee, H. Zhang, D. Z. Qian, S. Rey, J. O. Liu et al., Acriflavine inhibits HIF-1 dimerization, tumor growth, and vascularization, Proc Natl Acad Sci USA, vol.106, pp.17910-17915, 2009.

H. Z. Imtiyaz, E. P. Williams, M. M. Hickey, S. A. Patel, A. C. Durham et al., Hypoxia-inducible factor 2alpha regulates macrophage function in mouse models of acute and tumor inflammation, J Clin Invest, vol.120, pp.2699-714, 2010.

H. Lu, R. A. Forbes, and A. Verma, Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis, J Biol Chem, vol.277, pp.23111-23116, 2002.

O. Warburg, F. Wind, and E. Negelein, THE METABOLISM OF TUMORS IN THE BODY, J Gen Physiol, vol.8, pp.519-549, 1927.

P. Sonveaux, T. Copetti, D. Saedeleer, C. J. Végran, F. Verrax et al., Targeting the lactate transporter MCT1 in endothelial cells inhibits lactate-induced HIF-1 activation and tumor angiogenesis, PLoS ONE, vol.7, p.33418, 2012.

M. Wenes, M. Shang, D. Matteo, M. Goveia, J. Martín-pérez et al., Macrophage Metabolism Controls Tumor Blood Vessel Morphogenesis and Metastasis, Cell Metab, vol.24, pp.701-716, 2016.

S. K. Chambers, Role of CSF-1 in progression of epithelial ovarian cancer, Future Oncol, vol.5, pp.1429-1469, 2009.

H. Ide, D. B. Seligson, S. Memarzadeh, L. Xin, S. Horvath et al., Expression of colony-stimulating factor 1 receptor during prostate development and prostate cancer progression, Proc Natl Acad Sci, vol.99, pp.14404-14413, 2002.

B. M. Kacinski, K. A. Scata, D. Carter, L. D. Yee, E. Sapi et al., CSF-1 receptor) and CSF-1 transcripts and protein are expressed by human breast carcinomas in vivo and in vitro, Oncogene, vol.6, pp.941-52, 1991.

M. A. Hallett, K. T. Venmar, and B. Fingleton, Cytokine stimulation of epithelial cancer cells: the similar and divergent functions of IL-4 and IL-13, Cancer Res, vol.72, pp.6338-6381, 2012.

F. R. Greten and S. I. Grivennikov, Inflammation and Cancer: Triggers, Mechanisms, and Consequences, Immunity, vol.51, pp.27-41, 2019.

S. Shalapour and M. Karin, Pas de Deux: Control of Anti-tumor Immunity by Cancer-Associated Inflammation, Immunity, vol.51, pp.15-26, 2019.

J. Chen, Y. Yao, C. Gong, F. Yu, S. Su et al., CCL18 from tumor-associated macrophages promotes breast cancer metastasis via PITPNM3, Cancer Cell, vol.19, pp.541-55, 2011.

S. Su, J. Liao, J. Liu, D. Huang, C. He et al., Blocking the recruitment of naive CD4+ T cells reverses immunosuppression in breast cancer, Cell Res, vol.27, pp.461-82, 2017.

Y. Delneste, P. Charbonnier, N. Herbault, G. Magistrelli, G. Caron et al., Interferon-gamma switches monocyte differentiation from dendritic cells to macrophages, Blood, vol.101, pp.143-50, 2003.

J. Lou, S. T. Low-nam, J. G. Kerkvliet, and A. D. Hoppe, Delivery of CSF-1R to the lumen of macropinosomes promotes its destruction in macrophages, J Cell Sci, vol.127, pp.5228-5267, 2014.

F. Verreck, T. De-boer, D. Langenberg, M. A. Hoeve, M. Kramer et al., Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria, Proc Natl Acad Sci USA, vol.101, pp.4560-4565, 2004.

S. Garcia, L. M. Hartkamp, B. Malvar-fernandez, I. E. Van-es, H. Lin et al., Colonystimulating factor (CSF) 1 receptor blockade reduces inflammation in human and murine models of rheumatoid arthritis, Arthritis Res Ther, vol.18, p.75, 2016.

J. A. Hamilton, A. D. Cook, and P. P. Tak, Anti-colony-stimulating factor therapies for inflammatory and autoimmune diseases, Nat Rev Drug Discov, vol.16, pp.53-70, 2016.

C. Peyssonnaux, P. Cejudo-martin, A. Doedens, A. S. Zinkernagel, R. S. Johnson et al., Cutting edge: Essential role of hypoxia inducible factor-1alpha in development of lipopolysaccharide-induced sepsis, J Immunol, vol.178, pp.7516-7525, 2007.

A. Casazza, D. Conza, G. Wenes, M. Finisguerra, V. Deschoemaeker et al., Tumor stroma: a complexity dictated by the hypoxic tumor microenvironment, Oncogene, vol.33, pp.1743-54, 2014.

W. Yan, K. Shen, C. Tien, Y. Chen, and S. Liu, Recent progress in GM-CSF-based cancer immunotherapy, Immunotherapy, vol.9, pp.347-60, 2017.

L. J. Bayne, G. L. Beatty, N. Jhala, C. E. Clark, A. D. Rhim et al., Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer, Cancer Cell, vol.21, pp.822-857, 2012.

Y. Pylayeva-gupta, K. E. Lee, C. H. Hajdu, G. Miller, and D. Bar-sagi, Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia, Cancer Cell, vol.21, pp.836-883, 2012.

F. Reggiani, V. Labanca, P. Mancuso, C. Rabascio, G. Talarico et al., Adipose Progenitor Cell Secretion of GM-CSF and MMP9 Promotes a Stromal and Immunological Microenvironment That Supports Breast Cancer Progression, Cancer Res, vol.77, pp.5169-82, 2017.

P. Bhattacharya, I. Budnick, M. Singh, M. Thiruppathi, K. Alharshawi et al., Dual Role of GM-CSF as a Pro-Inflammatory and a Regulatory Cytokine: Implications for Immune Therapy, J Interferon Cytokine Res, vol.35, pp.585-99, 2015.

D. Achkova and J. Maher, Role of the colony-stimulating factor (CSF)/CSF-1 receptor axis in cancer, Biochem Soc Trans, vol.44, pp.333-374, 2016.

, Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited

, Author Manuscript Published OnlineFirst on, 2020.

, GM+LA-M? (red) were stimulated for 24 h with LPS before intracellular staining with anti-TNF? and anti-IL6. Dot plots, gating strategy; histograms, levels of TNF? and IL6 (grey histograms, isotype control mAbs), CXCL8, IL10, IL12p70 and CXCL10 (n=7). B. Day-5 GM-M? (blue), vol.6

, Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited

, Author Manuscript Published OnlineFirst on, 2020.