Skip to Main content Skip to Navigation
Journal articles

An UWB Physical Optics Approach for Fresnel-Zone RCS Measurements on a Complex Target at Non-Normal Incidence

Abstract : In this paper, we propose a fast method for measuring the radar cross section of a complex target at non-normal incidences and Fresnel region antenna-to-target distances. The proposed method relies both on the physical optics approach and on averaging the field distribution over the transmitting and receiving antenna apertures. The ratio between the analytical expression of the radar cross section at far-field and Fresnel region results in a field-zone extrapolation factor. The RCS resulting from the scattering parameters measured at Fresnel region distances is then corrected with that field-zone extrapolation factor. The method is suitable to be used in a perturbed, multipath environment by applying the distance averaging technique, coupling subtraction or time gating. Our technique requires a very simple measuring configuration consisting of two horn antennas and a vector network analyzer. The experimental validation of the proposed technique demonstrates reasonable agreement with simulated radar cross section at non-normal incidence.
Document type :
Journal articles
Complete list of metadatas

Cited literature [40 references]  Display  Hide  Download

https://hal-univ-rennes1.archives-ouvertes.fr/hal-02442753
Contributor : Laurent Jonchère <>
Submitted on : Thursday, January 16, 2020 - 4:49:05 PM
Last modification on : Wednesday, October 14, 2020 - 3:53:05 AM
Long-term archiving on: : Friday, April 17, 2020 - 6:57:04 PM

File

sensors-19-05454.pdf
Publisher files allowed on an open archive

Licence


Distributed under a Creative Commons Attribution 4.0 International License

Identifiers

Citation

I.V. Mihai, R. Tamas, A. Sharaiha. An UWB Physical Optics Approach for Fresnel-Zone RCS Measurements on a Complex Target at Non-Normal Incidence. Sensors, MDPI, 2019, 19 (24), ⟨10.3390/s19245454⟩. ⟨hal-02442753⟩

Share

Metrics

Record views

105

Files downloads

186