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Abstract: In this paper, we propose a fast method for measuring the radar cross section of a complex
target at non-normal incidences and Fresnel region antenna-to-target distances. The proposed
method relies both on the physical optics approach and on averaging the field distribution over the
transmitting and receiving antenna apertures. The ratio between the analytical expression of the
radar cross section at far-field and Fresnel region results in a field-zone extrapolation factor. The RCS
resulting from the scattering parameters measured at Fresnel region distances is then corrected with
that field-zone extrapolation factor. The method is suitable to be used in a perturbed, multipath
environment by applying the distance averaging technique, coupling subtraction or time gating.
Our technique requires a very simple measuring configuration consisting of two horn antennas and
a vector network analyzer. The experimental validation of the proposed technique demonstrates
reasonable agreement with simulated radar cross section at non-normal incidence.

Keywords: fresnel region; radar cross section; non-normal incidence; rectangular plate;
complex target

1. Introduction

Radar cross section (RCS) measurements are generally performed in anechoic chambers or in an
open area test site (OATS), under far-field conditions. Large targets, such as aircrafts, vessels, and other
large vehicles either cannot be placed inside an anechoic chamber, or the cost of such a measuring
site would be prohibitive. Conversely, RCS measurements at far-field ranges in an OATS are faced
to ground reflections and a low signal-to-noise ratio (SNR). Moreover, classical near-field-to-far-field
transformations are complex, time-consuming, and expensive to be implemented at a large scale,
and therefore not suitable for processing data in a real-time scenario. In that case, techniques for RCS
evaluation from measurements at Fresnel region radar-to-target distances in a perturbed, multipath
environment might be needed. The radar cross section of large, complex targets can also be evaluated
on small scale models [1–8]. The far-field, radar cross section of a simplified model consisting of
rectangular patches and slots can be computed analytically; it may therefore serve as a reference for
comparison purposes when extracting the RCS by processing Fresnel-zone data.

There are several simple methods to approximate the radar cross section (RCS) of different targets
at Fresnel region ranges, based on the geometric optics (GO) or physical optics (PO). Geometric optics
is an approximate approach based on ray-tracing from the radar to the specular points on the surface
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of the target [9]. The method fails when evaluating the RCS of flat targets, as the radius of curvature
is infinite. Physical optics overcomes this inconvenient by approximating the Stratton–Chu integral
equation for the scattered field. The current density Js induced on the surface of a flat or nearly flat
perfect electric target is found by assuming the tangent plane approximation:

JS =

{
2n×Hi, in the specular region

0, in the shadowed region
(1)

where n is the normal unit vector at the surface of the target and Hi is the tangential component of the
incident magnetic field. An advantage of the PO is the ease to find the scattered field by integrating the
current distribution on the surface of the target; conversely, the approximation is only valid at normal
or near normal incidence (θ ≤ 20◦) [10–13].

The phase deviation between the contributions of different source points to the scattered field
should be calculated, in order to find the RCS of a target using PO. Such an evaluation is more
difficult in the Fresnel region due to the reactive components of the field and the complexity of the
surface integrals to be computed. Several approaches have been proposed, in order to overcome
these shortcomings when computing the phase deviation at short distances through modified Green’s
functions [14–16] and approximations in the phase term [17–20].

For a radar-to-target distance falling in the near-field zone the field scattered by a dielectric slab
can be found through a PO surface integral on equivalent current distributions by using exact Green’s
functions [14]; a more accurate representation of the Green’s function led to an improved form for the
near-field PO RCS for some complex targets [15]. A similar expression of the phase term in Fresnel
region was derived in [16], by performing an expansion in an arbitrary point instead of the origin.
In [17], the PO integral is adapted to Fresnel region scattering by phase approximations and surface
partitioning. A similar stationary phase method is used in [18] to determine the field distribution
near an electrically large conductor. The field scattered by a rectangular, metallic plate in the Fresnel
region can be found from the PO surface integral computed by using the adaptive Gauss–Lobatto
integration method [19]. The RCS of perfectly-conducting flat targets such as rectangular plates or
disks can be evaluated at oblique incidence and below the lower limit of the Fraunhofer range by using
the PO approach [20]. The deviation in the phase term can be approximated through Fresnel integrals
in order to reduce the complexity and consequently, the computing time. An approach based on a
Fresnel region to far-field transformation is presented in [21]; the RCS of a metal plate is evaluated and
a simplified aircraft model is characterized. The scattering problem on a metallic, rectangular target
in the Fresnel region is analyzed in [22] by using the Helmholtz-–Kirchhoff formula and Babinet’s
principle. Horn antennas are generally preferred for RCS measurements in the Fresnel and near-field
regions [23]. In a previous work [24], we proposed a method to measure the RCS of a rectangular
target at Fresnel zone ranges and normal incidence, in a real environment and a narrow band by using
low-directivity antennas, such as Vivaldi or log–periodic antennas. In that case, the strong mutual
coupling between antennas and the impedance mismatch impact on the accuracy of the RCS evaluated
in the Fresnel region. Due to a quite low signal-to-coupling ratio along with a low antenna gain our
previous method only allows RCS measurements at normal incidence (θ = 0). Other RCS measuring
techniques at short distances were proposed in [25–37], by taking the PO into consideration.

Most of the methods above apply PO at short antenna-to-target distances, but only for
narrow-band analysis on basic target shapes; such techniques may also require a complex measuring
configuration. Data processing, including the evaluation of phase deviation usually results in a long
computing time, which makes it difficult to apply such a method to a real-time scenario. However,
in many practical cases an ultra-wide band (UWB) analysis on complex shape targets may be needed.
In this paper, we present a fast UWB technique for measuring the RCS of a complex target at non-normal
incidences and Fresnel region antenna-to-target distances. The technique consists of computing a
field-zone extrapolation factor to be applied on Fresnel zone RCS measured data, in order to extrapolate
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the results to the far-field zone. The field-zone extrapolation factor was derived as the ratio between
theoretical RCS figures computed in the far-field and Fresnel zones. Moreover, compared to the
methods presented before, the technique for measuring the RCS in the Fresnel region proposed in
this article requires a very simple measuring configuration consisting of two antennas and a vector
network analyzer (VNA). Additionally, the method is suitable to be used in a perturbed multipath
environment by applying the distance averaging technique [38], coupling subtraction or time gating.
The phase deviation in the PO surface integral was expressed in terms of Fresnel integrals; thus, the
computing time was reduced from a couple of hours to a few minutes. We validated our technique
by analyzing a simplified small-scale model of camping car side. In this case, the RCS analysis was
performed by considering φ = 0◦ and varying θ between 0◦ and 20◦. The results can be extended by
varying the φ angle as well provided that the tangent plane approximation in Equation (1) was applied
with respect to the electric field.

The paper is organized as follows: a theoretical approach for evaluating the RCS in the Fresnel
and far-field zones is firstly presented and an analytical field-zone extrapolation factor is derived;
a computing time saving technique with Fresnel integrals is then developed and experimental results
are eventually provided.

2. Analytical Evaluation of the RCS

2.1. Case of a Rectangular Plate

The magnetic field Hr reflected by a plate of size a by b (Figure 1) at a distance d can be expressed
as follows:

Hr = j
k exp(−jkd)

4πd
cosθ

∫ b
2

− b
2

∫ a
2

− a
2

Jsexp(−jk∆r)dx′dz′. (2)

Figure 1. Reflected plane wave at non-normal incidence on a rectangular plate.

In Equation (2), JS is the current distribution induced by an incident magnetic field Hi on the
surface of the plate, k is the wave number, d is the distance between the antennas and the target, θ is
the incidence angle, and ∆r is the path length difference between any point on the target of coordinates
(x′, d, z′) and the reference point in the middle of the target (Figure 2).
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Figure 2. Measuring setup with horn antennas and a rectangular plate.

By cumulatively considering:

• the tangent plane approximation in a specular region (JS = 2n×Hi),
• a distance d falling within the Fresnel zone,
• a single source point on the transmitting antenna (x′′ − h1, 0, z′′),
• a single receiving point on the receiving antenna (x + h1, 0, z),

The RCS at ranges in the Fresnel region can be defined as

σFr(z′′, z) = 4πd2

∣∣∣∣∣Hr

Hi

∣∣∣∣∣
2

=
4πcos2θ

λ2

∣∣∣∣∣
∫ b

2

− b
2

∫ a
2

− a
2

exp(−jk∆r)dx′dz′
∣∣∣∣∣
2

. (3)

In practice, an infinite number of source points and field points on the transmitting and receiving
antenna apertures participate to the radar link. By expressing ∆r as in appendix A and by averaging
the field distribution over the apertures of both antennas, the RCS at ranges in the Fresnel region is
finally found as:

σFr =
4πcos2θ

λ2

∣∣∣∣∣ 1
(2h1)4

∫ h1

−h1

∫ h1

−h1

∫ h1

−h1

∫ h1

−h1

∫ b
2

− b
2

∫ a
2

− a
2

exp

[
−jk

(
(z− z′)2

2d
+

(z′′ − z′)2

2d
+

(z′)2

2d

+

(
x′ − (x′′ − h1)

)2

2d
+

(
x′ − (x + h1)

)2

2d
+ 2z′sinθ

)]
dx′dz′dzdz′′dxdx′′

∣∣∣∣∣
2

=
4πcos2θ

λ2 Q2
Frplate

(4)

where

Q2
Frplate

=

∣∣∣∣∣ 1
(2h1)4

∫ h1

−h1

∫ h1

−h1

∫ h1

−h1

∫ h1

−h1

∫ b
2

− b
2

∫ a
2

− a
2

exp

[
−jk

(
(z− z′)2

2d
+

(z′′ − z′)2

2d
+

(z′)2

2d

+

(
x′ − (x′′ − h1)

)2

2d
+

(
x′ − (x + h1)

)2

2d
+ 2z′sinθ

)]
dx′dz′dzdz′′dxdx′′

∣∣∣∣∣
2

(5)

In Equation (4), we assumed:

• an uniform illumination of the target,
• an uniform illumination of the receiving antenna,
• a constant current distribution on the transmitting antenna.

The hypothesis of a constant current distribution stands for ultra-wide band antennas, and a
quasi-uniform illumination can be assumed for ranges within the Fresnel region.
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A PO, far-field expression for the RCS of a plate, σf f can be found from Equation (4) when d→ ∞:

σf f =
4πcos2θ

λ2

∣∣∣∣∣
∫ b

2

− b
2

∫ a
2

− a
2

exp(−2jkz′sinθ)dx′dz′
∣∣∣∣∣
2

=
4πa2b2cos2θ

λ2

[ sin(kbsinθ)

kbsinθ

]2
(6)

and an analytical field-zone extrapolation factor F from Fresnel to far-field region can be defined:

F =
σFr
σf f

=
QFrplate

a2b2
[

sin(kbsinθ)
kbsinθ

]2 . (7)

When evaluating the six-integral expression in Equation (4), a computing time of several hours is
needed on a customary computer, for a target of a size in the order of ten by ten minimal wavelengths,
and for a fractional bandwidth in the order of unity. By using the Fresnel integrals, relation Equation (4)
can be rewritten as a four-integral expression, Equation (A8). Since Fresnel integrals can be computed
based on an asymptotic expansion, the computational time can be reduced form hours to minutes
for oblique incidence, or even seconds for normal incidence; it should be noted that for an oblique
incidence the expression of the pathlength difference is more complex than for normal incidence.

2.2. Case of a Complex Target Shape

In the Fresnel region, one should use either antennas of a size close to the target size, or antenna
arrays, in order to completely illuminate the target. As an example, for measuring the RCS of a camping
car of a typical size of 600 cm × 250 cm, a 1:10 scale model would make it possible to use customary
horn antennas, provided that the frequency is multiplied by the same factor. A simplified target model,
based on rectangular patches and slots, would serve as a reference for comparing measured results to
analytical results. We assume the physical optics approximation, i.e., in the specular region, the surface
current density on the surface of a flat target is twice the incident magnetic field, and it cancels in the
shadow region. Thus, we solely analyze the RCS corresponding to the side of the camping-car, as no
current density is considered on the other sides of the vehicle.

The magnetic field Hrc−c reflected by a simplified, small-scale model of a camping car side
(Figure 3) at a distance d can be expressed as follows:

Hrc−c = Hr − Hr1 − Hr2 − Hr3 − Hr4 − Hr5 = j
k exp(−jkd)

4πd
JScosθQFRc−c , (8)

where

QFRc−c =
∫ b

2

− b
2

∫ a
2

− a
2

exp(−jk∆r)dx′dz′ −
∫ b1

b11

∫ a1

a11

exp(−jk∆r1)dx′dz′

−
∫ b2

b22

∫ a2

a22

exp(−jk∆r2)dx′dz′ −
∫ b3

b33

∫ a3

a33

exp(−jk∆r3)dx′dz′

−
∫ b4

b44

∫ a4

a44

exp(−jk∆r4)dx′dz′ −
∫ b5

b55

∫ a5

a55

exp(−jk∆r5)dx′dz′.

(9)

In Equation (8), the magnetic field reflected by the target (Figure 3) is found by subtracting the
magnetic field that would be reflected by five small rectangular plates (Hr1 , Hr2 , Hr3 , Hr4 , Hr5) of the
same size as the slots corresponding to the non-reflective surface of the windows and wheels i.e.,
(b1 − b11) by (a1 − a11), (b2 − b22) by (a2 − a22), (b3 − b33) by (a3 − a33), (b4 − b44) by (a44 − a4) and
(b5 − b55) by (a55 − a5) respectively. The path length differences ∆ri,(i≤5) corresponding to each of the
five small rectangular slots (Figure 4) are defined between any point in the area of interest and the
reference point in the middle of the target.
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(a) (b)

(c)
Figure 3. Camping car side as a complex target: (a) real target, (b) simulated model and (c) small
scale model.

Figure 4. Measuring setup with horn antennas and a simplified, small scale model of camping car side.

Under the same assumptions as for deriving relation Equation (3) the RCS of the complex target
at ranges in the Fresnel region is found as

σFr = 4πd2

∣∣∣∣∣Hrc−c

Hi

∣∣∣∣∣
2

=
4πcos2θ

λ2

∣∣∣∣∣ 1
(2h1)4

∫ h1

−h1

∫ h1

−h1

∫ h1

−h1

∫ h1

−h1

QFRc−c dxdzdx′′dz′′
∣∣∣∣∣
2

. (10)

When d → ∞, the PO, far-field RCS of the complex target σf f is found. The field-zone
extrapolation factor F from Fresnel to far-field zone is eventually found as

F =
σFr
σf f

. (11)

As for the rectangular plate, the computing time can be reduced by expressing the RCS in terms
of Fresnel integrals.
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3. Measuring Setup for Validation and Results

The method was validated by measurements at normal incidence (θ = 0◦) and at incidence
angles within the limits of the PO approximation (θ ≤ 20◦). We choose as a target a rectangular
plate of a size a = 36 cm by b = 22 cm (Figure 5a) and a small scale model of a camping car
side (Figure 5b). With the notations in Section II, we chose (b1 − b11) = 7 cm, (a1 − a22) = 10 cm,
(b2 − b22) = 2 cm, (a2 − a22) = 6 cm, (b3 − b33) = 2 cm, (a3 − a33) = 6 cm, (b4 − b44) = 2 cm,
(a44 − a4) = 6, (b5 − b55) = 3 cm, and (a55 − a5) = 4 cm. The target was placed in a real multipath
environment and the measurements were performed at frequencies between 2 and 10 GHz. A set of
identical horn antennas of 15 cm × 15 cm in aperture size was used to measure the S21 parameter at a
set of Fresnel region antenna-to-target distances, i.e., d = 40 cm, 50 cm, 60 cm, 70 cm, 80 cm, 90 cm,
and 100 cm. The gain of the horn antennas and the input reflection coefficient as functions of frequency
are shown in Figure 6.

(a) (b)
Figure 5. Measuring setup for validation for a rectangular plate (a) and a complex target (b).

2 4 6 8 10
Frequency (GHz)

10

15

20

25

dB
i

Antenna 1
Antenna 2

(a)

2 4 6 8 10
Frequency (GHz)

-50

-40

-30

-20

-10

0

(d
B

)

S11
S22

(b)
Figure 6. (a) Horn antenna gain and (b) magnitude of the input reflection coefficient as functions
of frequency.

In order to find the Fresnel region RCS, the radar link equation was corrected with the field-zone
extrapolation factor F from Equation (7) for the rectangular plate and Equation (11) for the complex
target, by taking into account the impedance mismatch as well. All the measurements were performed
in a multipath environment, and therefore the distance averaging technique was applied on the
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measured data [24,38] after the subtraction of the mutual coupling (CS) between the transmitting and
receiving antenna:

σf f =
(4π)3

FG2λ2

|Stotal
21Fr
− Scoupling

21 |2

|1− S22|2
R0

Ra(1− |S11|2)
. (12)

In Equation (12), R0 is the normalizing impedance (50 ohm), Ra is the radiation resistance of the
receiving antenna, G is the gain of each antenna, Scoupling

21 is the S21 parameter measured without
the target and Stotal

21Fr
is a normalized transfer function computed as an average figure over the set of

distances dn [24]:

Stotal
21Fr

=
1
N

N

∑
n=1

(
dn

d0

)2∣∣∣∣∣S21,nexp(2jkdn)

∣∣∣∣∣ (13)

with d0 a reference distance usually set at 1 m.
Measurements were performed on a set of 401 frequencies, equally spaced between 2 and 10 GHz.
Figure 7 displays the frequency domain representation of the magnitude of S21 measured for a

rectangular plate and for a small scale model of a camping car side at θ = 0◦, 5◦ and 20◦. The mentioned
coupling in the figures refers to S21 measured without target. Figure 7 shows that as the angle of
incidence increased, the magnitude of S21 decreased and became comparable to the level of the mutual
coupling. In this case, by subtracting the coupling between transmitter and receiver, the accuracy on
RCS evaluation in the Fresnel region may improve.

As an alternative to the coupling subtraction one can apply the time-gating technique. Figure 8
displays the inverse Fourier transform of S21 measured for a rectangular plate and for a small scale
model of a camping car side at θ = 0◦, 5◦ and 20◦. It can be noted that at high incidence angles
(θ = 20◦), the amplitude of the wave reflected by the target was comparable to the amplitude of the
late waves reflected by different obstacles in the environment. In this case, a distance averaging after a
time gating performed on the impulse response between 5 ns and 12 ns will remove the effects of the
late reflexions.

Figure 9 displays a comparison between RCS figures simulated in CST, and measured at Fresnel
region distances, with and without correcting for the field zone with the field-zone extrapolation
factor F (after coupling subtraction or time gating). More specifically, in Figure 9a–c we show the
RCS results for the rectangular plate at normal incidence (θ = 0◦) and non-normal incidence angles
of 5 and 20 degrees, respectively. Figure 9d–f show RCS results for the complex target i.e., a small
scale model of a camping car side at normal incidence (θ = 0◦) and at incidence angles of 5 and
20 degrees, respectively.

At incidence angles where the amplitude of the direct reflexions is comparable to the amplitude
of the late reflexions, the subtraction of the coupling between transmitter and receiver will lead to
less accurate RCS results; conversely, the utilization of the time gating prior to the distance averaging
will improve the accuracy for evaluating RCS figures corrected with F. However, at normal incidence,
where the amplitude of the late reflexions is several times smaller than target reflexion and the
signal-to-coupling ratio is high, both techniques show same accuracy.
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Figure 7. Frequency domain representation of the magnitude of the S21 parameters measured for a
rectangular plate at θ = 0◦ (a), θ = 5◦ (b), and θ = 20◦ (c), and for a small scale model of a camping car
side at θ = 0◦ (d), θ = 5◦ (e), and θ = 20◦ (f).



Sensors 2019, 19, 5454 10 of 15

(a) (θ = 0◦)

(b) (θ = 5◦)

(c) (θ = 20◦)

(d) (θ = 0◦)

(e) (θ = 5◦)

(f) (θ = 20◦)

Figure 8. Time domain representation of the S21 parameters measured for a rectangular plate at θ = 0◦

(a), θ = 5◦ (b), and θ = 20◦ (c), and for a small scale model of a camping car side at θ = 0◦ (d), θ = 5◦

(e), and θ = 20◦ (f).
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Figure 9. A comparison between the RCS simulated in CST, the RCS measured at Fresnel region
distances and the RCS measured at Fresnel region distances corrected with the field-zone extrapolation
factor F after coupling subtraction (CS) or time gating (TG) for a rectangular plate at θ = 0◦ (a), θ = 5◦

(b), and θ = 20◦ (c), and for a small scale model of a camping car side at θ = 0◦ (d), θ = 5◦ (e), and
θ = 20◦ (f).

4. Conclusions

When extracting the radar cross section from Fresnel zone measurements, discrepancies of up to
15 dB can be noted, compared to far-field results. We therefore defined a field-zone extrapolation factor
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to be applied on the RCS figures measured in the Fresnel region. By approximating the extrapolation
factor in terms of Fresnel integrals the computing time can be dramatically reduced (typically from
hours to minutes), compared to exact field-zone extrapolation approaches. It should be emphasized
that our technique requires a simple, low-cost setup consisting of two identical horn antennas and
a vector network analyzer. Moreover, we showed that our method can be used in a perturbed,
multipath environment; a data processing approach including distance averaging, time-gating, and
antenna coupling subtraction makes it possible to measure the radar cross section of large targets
e.g., aircrafts, vessels, or other large vehicles, without needing an anechoic chamber. There is a good
agreement between the RCS figures extracted with our method from measurements in the Fresnel
zone, and simulations. In order to validate our approach on a complex target, we used a simplified
model consisting of rectangular patches and slots; the far-field RCS of such a model can further be
evaluated analytically for comparison purposes. Further work will focus on increasing the incidence
angle and on taking into account the effects of the diffraction.
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Appendix A

Appendix A.1

The path length difference ∆r can be expressed as

∆r = R1 + R2 − 2d (A1)

where

R1 =

√(
x′ − (x′′ − h1)

)2
+ (d + z′sinθ)2 + (z′′ − z′)2, (A2)

R2 =

√(
x′ − (x + h1)

)2
+ (d + z′sinθ)2 + (z− z′)2. (A3)

By assuming

d2 �
( a

2
+ 2h1

)2
+
(

h1 +
b
2

)2
, (A4)

(A1) becomes

∆r =
(z− z′)2

2d
+

(z′′ − z′)2

2d
+

(
x′ − (x′′ − h1)

)2

2d
+

(
x′ − (x + h1)

)2

2d
+ 2z′sinθ.

(A5)
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Appendix A.2

QFrplate can be rewritten as

QFrplate =
1

(2h1)4

∫ h1

−h1

∫ h1

−h1

∫ b
2

− b
2

exp

[
−jk

(
(z− z′)2

2d
+

(z′′ − z′)2

2d
+

(z′)2

2d
+ 2z′sinθ

)]
dz′dzdz′′

×
∫ h1

−h1

∫ h1

−h1

∫ a
2

− a
2

exp

[
−jk

((
x′ − (x′′ − h1)

)2

2d
+

(
x′ − (x + h1)

)2

2d

)]
dx′dxdx′′.

(A6)

By using the Fresnel integral

f (w) =
∫ ∞

w
exp(−ju2), (A7)

QFrplate becomes

QFrplate =
1

(2h1)4

∫ h1

−h1

∫ h1

−h1

∫ b
2

− b
2

exp

[
−jk

(
(z− z′)2

2d
+

(z′′ − z′)2

2d
+

(z′)2

2d
+ 2z′sinθ

)]
dz′dzdz′′

× 2d
k

∫ a
2

− a
2

{[
f

(
x′
√

k
2d

)
− f

(
(x′ − 2h1)

√
k

2d

)][
f

(
(x′ + 2h1)

√
k

2d

)
− f

(
x′
√

k
2d

)]
dx′
}

.

(A8)
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