Z. Weng, K. Wang, H. Li, and Q. Shi, A comprehensive study of the association between drug hepatotoxicity and daily dose, liver metabolism, and lipophilicity using 975 oral medications, Oncotarget, vol.6, pp.17031-17038, 2015.

E. S. Bj?-ornsson and J. H. Hoofnagle, Categorization of drugs implicated in causing liver injury: critical assessment based on published case reports, Hepatology, vol.63, pp.590-603, 2016.

G. Labbe, D. Pessayre, and B. Fromenty, Drug-induced liver injury through mitochondrial dysfunction: mechanisms and detection during preclinical safety studies, Fundam Clin Pharmacol, vol.22, pp.335-353, 2008.

H. K. Seitz, R. Bataller, and H. Cortez-pinto, Alcoholic liver disease, Nat Rev Dis Primers, vol.4, p.16, 2018.

J. E. Klaunig, X. Li, and Z. Wang, Role of xenobiotics in the induction and progression of fatty liver disease, Toxicol Res (Camb), vol.7, pp.664-680, 2018.

M. Wong, J. Huang, and J. George, The changing epidemiology of liver diseases in the Asia-Pacific region, Nat Rev Gastroenterol Hepatol, vol.16, pp.57-73, 2019.

M. Biour, B. Salem, C. Chazouill-eres, O. Grang-e, J. D. Serfaty et al., Druginduced liver injury; fourteenth updated edition of the bibliographic database of liver injuries and related drugs, Gastroenterol Clin Biol, vol.28, pp.720-759, 2004.

R. Ramachandran and S. Kakar, Histological patterns in drug-induced liver disease, J Clin Pathol, vol.62, pp.481-492, 2009.

B. Fromenty and D. Pessayre, Inhibition of mitochondrial beta-oxidation as a mechanism of hepatotoxicity, Pharmacol Ther, vol.67, pp.101-154, 1995.

J. Massart, K. Begriche, N. Buron, M. Porceddu, A. Borgne-sanchez et al., Drug-induced inhibition of mitochondrial fatty acid oxidation and steatosis, Curr Pathobiol Rep, vol.1, pp.147-157, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00860237

S. K. Satapathy, V. Kuwajima, J. Nadelson, O. Atiq, and A. J. Sanyal, Drug-induced fatty liver disease: an overview of pathogenesis and management, Ann Hepatol, vol.14, pp.789-806, 2015.

D. E. Amacher and N. Chalasani, Drug-induced hepatic steatosis, Semin Liver Dis, vol.34, pp.205-214, 2014.

K. Begriche, J. Massart, M. A. Robin, A. Borgne-sanchez, and B. Fromenty, Druginduced toxicity on mitochondria and lipid metabolism: mechanistic diversity and deleterious consequences for the liver, J Hepatol, vol.54, pp.773-794, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00739371

V. Patel and A. J. Sanyal, Drug-induced steatohepatitis, Clin Liver Dis, vol.17, pp.533-546, 2013.

L. Rabinowich and O. Shibolet, Drug induced steatohepatitis: an uncommon culprit of a common disease, BioMed Res Int, p.168905, 2015.

A. Dash, R. A. Figler, A. J. Sanyal, and B. R. Wamhoff, Drug-induced steatohepatitis, Expert Opin Drug Metab Toxicol, vol.13, pp.193-204, 2017.

J. D. Schumacher and G. L. Guo, Mechanistic review of drug-induced steatohepatitis, Toxicol Appl Pharmacol, vol.289, pp.40-47, 2015.

F. Bessone, M. Dirchwolf, M. A. Rodil, M. V. Razori, and M. G. Roma, Review article: druginduced liver injury in the context of nonalcoholic fatty liver disease -a physiopathological and clinical integrated view, Aliment Pharmacol Ther, vol.48, pp.892-913, 2018.

M. Wajner and A. U. Amaral, Mitochondrial dysfunction in fatty acid oxidation disorders: insights from human and animal studies, Biosci Rep, vol.36, p.281, 2015.

S. M. Houten, S. Violante, F. V. Ventura, and R. J. Wanders, The biochemistry and physiology of mitochondrial fatty acid b-oxidation and its genetic disorders

, Annu Rev Physiol, vol.78, pp.23-44, 2016.

N. Longo, M. Frigeni, and M. Pasquali, Carnitine transport and fatty acid oxidation, Biochim Biophys Acta, vol.1863, pp.2422-2435, 2016.

M. M. Adeva-andany, N. Carneiro-freire, M. Seco-filgueira, F. Andez-fern-andez, C. Mouriño-bayolo et al., Mitochondrial b-oxidation of saturated fatty acids in humans, Mitochondrion, vol.46, pp.73-90, 2019.

K. Begriche, J. Massart, M. A. Robin, F. Bonnet, and B. Fromenty, Mitochondrial adaptations and dysfunctions in nonalcoholic fatty liver disease, Hepatology, vol.58, pp.1497-1507, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00814080

S. Kersten and R. Stienstra, The role and regulation of the peroxisome proliferator activated receptor alpha in human liver, Biochimie, vol.136, pp.75-84, 2017.

A. C. Knapp, L. Todesco, M. Torok, and K. Beier, Effect of carnitine deprivation on carnitine homeostasis and energy metabolism in mice with systemic carnitine deficiency, Ann Nutr Metab, vol.52, pp.136-144, 2008.

A. Igoudjil, K. Begriche, D. Pessayre, and B. Fromenty, Mitochondrial, metabolic and genotoxic effects of antiretroviral nucleoside reverse-transcriptase inhibitors, Anti-Infect Agents Med Chem, vol.5, pp.273-292, 2006.

J. M. Saudubray, D. Martin, and P. De-lonlay, Recognition and management of fatty acid oxidation defects: a series of 107 patients, J Inherit Metab Dis, vol.22, pp.488-502, 1999.

R. J. Pollitt, Disorders of mitochondrial long-chain fatty acid oxidation, J Inherit Metab Dis, vol.18, pp.473-490, 1995.

O. Søvik, P. D. Maaswinkel-mooij, C. Van-den-bogert, H. R. Scholte, W. Onkenhout et al., Depletion of mitochondrial DNA in the liver of a patient with lactic acidemia and hypoketotic hypoglycemia, Acta Paediatr Scand, vol.78, pp.679-683, 1989.

A. M. Margolis, H. Heverling, P. A. Pham, and A. Stolbach, A review of the toxicity of HIV medications, J Med Toxicol, vol.10, pp.26-39, 2014.

V. A. Vishwanath, Fatty acid beta-oxidation disorders: a brief review, Ann Neurosci, vol.23, pp.51-55, 2016.

T. N. Tarasenko, K. Cusmano-ozog, and P. J. Mcguire, Tissue acylcarnitine status in a mouse model of mitochondrial b-oxidation deficiency during metabolic decompensation due to influenza virus infection, Mol Genet Metab, vol.125, pp.144-152, 2018.

F. R. Mansour, W. Wei, and N. D. Danielson, Separation of carnitine and acylcarnitines in biological samples: a review, Biomed Chromatogr, vol.27, pp.1339-1353, 2013.

N. Sahini and J. Borlak, Recent insights into the molecular pathophysiology of lipid droplet formation in hepatocytes, Prog Lipid Res, vol.54, pp.86-112, 2014.

G. Gao, F. J. Chen, and L. Zhou, Control of lipid droplet fusion and growth by CIDE family proteins, Biochim Biophys Acta Mol Cell Biol Lipids, vol.1862, pp.1197-1204, 2017.

D. E. Kleiner, Drug-induced microvesicular steatosis, Liver Pathology, pp.240-242, 2011.

D. E. Kleiner, N. P. Chalasani, and W. M. Lee, Hepatic histological findings in suspected drug-induced liver injury: systematic evaluation and clinical associations, Hepatology, vol.59, pp.661-670, 2014.

, Clinical and Research Information on drug-induced liver injury

B. Portmann, I. C. Talbot, D. W. Day, A. R. Davidson, I. M. Murray-lyon et al., Histopathological changes in the liver following a paracetamol overdose: correlation with clinical and biochemical parameters, J Pathol, vol.117, pp.169-181, 1975.

R. Bouvet, A. Cauchois, and A. Baert, Fatal paracetamol poisoning with hepatic microvesicular steatosis in a child after repeated administration of therapeutic doses

C. Al-nawakil, L. Willems, and C. Mauprivez, Successful treatment of Lasparaginase-induced severe acute hepatotoxicity using mitochondrial cofactors, Leuk Lymphoma, vol.55, pp.1670-1674, 2014.

K. Morii, M. Nishisaka, and S. Nakamura, A case of synthetic oestrogen-induced autoimmune hepatitis with microvesicular steatosis, J Clin Pharm Ther, vol.39, pp.573-576, 2014.

M. S. Shaefer, A. L. Edmunds, R. S. Markin, R. P. Wood, T. J. Pillen et al., Hepatic failure associated with imipramine therapy, Pharmacotherapy, vol.10, pp.66-69, 1990.

W. M. Kelsey and M. Scharyj, Fatal hepatitis probably due to indomethacin, JAMA, vol.199, pp.586-587, 1967.

E. M. Brunt, H. White, J. W. Marsh, B. Holtmann, and M. G. Peters, Fulminant hepatic failure after repeated exposure to isoflurane anesthesia: a case report, Hepatology, vol.13, pp.1017-1021, 1991.

D. Bus, L. Depuydt, P. Libbrecht, and L. , Severe drug-induced liver injury associated with prolonged use of linezolid, J Med Toxicol, vol.6, pp.322-326, 2010.

K. Leung, M. Quezada, Z. Chen, G. Kanel, and N. Kaplowitz, Niacin-induced anicteric microvesicular steatotic acute liver failure, Hepatol Commun, vol.2, pp.1293-1298, 2018.

R. Hegarty, M. Deheragoda, E. Fitzpatrick, and A. Dhawan, Paediatric fatty liver disease (PeFLD): all is not NAFLD -pathophysiological insights and approach to management, J Hepatol, vol.68, pp.1286-1299, 2018.

E. Schon and B. Fromenty, Alterations of mitochondrial DNA in liver diseases, Mitochondria in Liver Disease, pp.279-309, 2016.

E. S. Jung, K. Lee, and E. Yu, Interobserver agreement on pathologic features of liver biopsy tissue in patients with nonalcoholic fatty liver disease, J Pathol Transl Med, vol.50, pp.190-196, 2016.

G. C. Farrell, Drugs and steatohepatitis, Semin Liver Dis, vol.22, pp.185-194, 2002.

S. Bruno, P. Maisonneuve, and P. Castellana, Incidence and risk factors for nonalcoholic steatohepatitis: prospective study of 5408 women enrolled in Italian tamoxifen chemoprevention trial, BMJ, vol.330, p.932, 2005.

P. J. Scheuer, J. A. Summerfield, S. Lal, and S. Sherlock, Rifampicin hepatitis. A clinical and histological study, Lancet, vol.1, pp.421-425, 1974.

A. Grieco, B. Alfei, D. Rocco, and P. , Non-alcoholic steatohepatitis induced by carbamazepine and variegate porphyria, Eur J Gastroenterol Hepatol, vol.13, pp.973-975, 2001.

S. Sahoo and J. Hart, Histopathological features of L-asparaginase-induced liver disease, Semin Liver Dis, vol.23, pp.295-299, 2003.

P. A. Schwingel, H. P. Cotrim, and B. R. Salles, Anabolic-androgenic steroids: a possible new risk factor of toxicant-associated fatty liver disease, Liver Int, vol.31, pp.348-353, 2011.

D. L. Dixon, E. M. Sisson, M. Butler, A. Higbea, B. Muoio et al., Lomitapide and mipomersen: novel lipid-lowering agents for the management of familial hypercholesterolemia, J Cardiovasc Nurs, vol.29, pp.7-12, 2014.

X. Liu, P. Men, Y. Wang, S. Zhai, Z. Zhao et al., Efficacy and safety of lomitapide in hypercholesterolemia, Am J Cardiovasc Drugs, vol.17, pp.299-309, 2017.

M. Holtmann, D. Kopf, M. Mayer, E. Bechtinger, and M. H. Schmidt, Risperidoneassociated steatohepatitis and excessive weight-gain, Pharmacopsychiatry, vol.36, pp.206-207, 2003.

E. Farinelli, D. Giampaoli, A. Cenciarini, E. Cercado, and A. Verrotti, Valproic acid and nonalcoholic fatty liver disease: a possible association?, World J Hepatol, vol.7, pp.1251-1257, 2015.

A. Berson, D. Beco, V. Lett-eron, and P. , Steatohepatitis-inducing drugs cause mitochondrial dysfunction and lipid peroxidation in rat hepatocytes, Gastroenterology, vol.114, pp.764-774, 1998.

C. Mitchell, M. A. Robin, and A. Mayeuf, Protection against hepatocyte mitochondrial dysfunction delays fibrosis progression in mice, Am J Pathol, vol.175, 2009.

S. Satapati, B. Kucejova, and J. A. Duarte, Mitochondrial metabolism mediates oxidative stress and inflammation in fatty liver, J Clin Invest, vol.125, pp.4447-4462, 2015.

E. Scott and Q. M. Anstee, Genetics of alcoholic liver disease and non-alcoholic steatohepatitis, Clin Med (Lond), vol.18, pp.54-59, 2018.

H. K. Min, S. Sookoian, C. J. Pirola, J. Cheng, F. Mirshahi et al., Metabolic profiling reveals that PNPLA3 induces widespread effects on metabolism beyond triacylglycerol remodeling in Huh-7 hepatoma cells, Am J Physiol Gastrointest Liver Physiol, vol.307, pp.66-76, 2014.

A. Al-serri, Q. M. Anstee, and L. Valenti, The SOD2 C47T polymorphism influences NAFLD fibrosis severity: evidence from case-control and intrafamilial allele association studies, J Hepatol, vol.56, pp.448-454, 2012.

Y. S. Huang, C. H. Chang, T. L. Lin, and C. L. Perng, Genetic variations of superoxide dismutase 2 and cytochrome P450 2E1 in non-alcoholic steatohepatitis, Liver Int, vol.34, pp.931-936, 2014.

L. Tolosa, M. J. Omez-lech-on, J. , N. Herv-as, D. Jover et al., Advantageous use of HepaRG cells for the screening and mechanistic study of drug-induced steatosis, Toxicol Appl Pharmacol, vol.302, pp.1-9, 2016.

D. Grünig and U. Duthaler, Kr? ahenbühl S. Effect of toxicants on fatty acid metabolism in HepG2 cells, Front Pharmacol, vol.9, p.257, 2018.

P. Lett-eron, A. Sutton, A. Mansouri, B. Fromenty, and D. Pessayre, Inhibition of microsomal triglyceride transfer protein: another mechanism for druginduced steatosis in mice, Hepatology, vol.38, pp.133-140, 2003.

S. Wang and R. J. Kaufman, How does protein misfolding in the endoplasmic reticulum affect lipid metabolism in the liver?, Curr Opin Lipidol, vol.25, pp.125-132, 2014.

J. Allard, L. Guillou, D. Begriche, K. Fromenty, and B. , Drug-induced liver injury in obesity and nonalcoholic fatty liver disease, Adv Pharmacol, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02051781

A. Mahli, M. Saugspier, and A. Koch, ERK activation and autophagy impairment are central mediators of irinotecan-induced steatohepatitis, Gut, vol.67, pp.746-756, 2018.

S. Li, J. Guo, and Z. Ying, Valproic acid-induced hepatotoxicity in Alpers syndrome is associated with mitochondrial permeability transition pore openingdependent apoptotic sensitivity in an induced pluripotent stem cell model, Hepatology, vol.61, pp.1730-1739, 2015.

F. Degoul, A. Sutton, and A. Mansouri, Homozygosity for alanine in the mitochondrial targeting sequence of superoxide dismutase and risk for severe alcoholic liver disease, Gastroenterology, vol.120, pp.1468-7144, 2001.

A. Schilling, R. Corey, M. Leonard, and B. Eghtesad, Acetaminophen: old drug, new warnings, Clevel Clin J Med, vol.77, pp.19-27, 2010.

E. P. Krenzelok and M. A. Royal, Confusion: acetaminophen dosing changes based on NO evidence in adults, Drugs R, vol.12, pp.45-48, 2012.

D. J. Antoine, J. W. Dear, and P. S. Lewis, Mechanistic biomarkers provide early and sensitive detection of acetaminophen-induced acute liver injury at first presentation to hospital, Hepatology, vol.58, pp.777-787, 2013.

A. Michaut, C. Moreau, M. A. Robin, and B. Fromenty, Acetaminophen-induced liver injury in obesity and nonalcoholic fatty liver disease, Liver Int, vol.34, pp.171-179, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01128195

P. B. Watkins, N. Kaplowitz, and J. T. Slattery, Aminotransferase elevations in healthy adults receiving 4 grams of acetaminophen daily: a randomized controlled trial, JAMA, vol.296, pp.87-93, 2006.

A. Van-rongen, P. A. V?-alitalo, and M. Y. Peeters, Morbidly obese patients exhibit increased CYP2E1-mediated oxidation of acetaminophen, Clin Pharmacokinet, vol.55, pp.833-847, 2016.

P. Forget, X. Wittebole, and P. F. Laterre, Therapeutic dose of acetaminophen may induce fulminant hepatitis in the presence of risk factors: a report of two cases, Br J Anaesth, vol.103, pp.899-900, 2009.

F. Savino, M. M. Lupica, V. Tarasco, E. Locatelli, S. Garazzino et al., Fulminant hepatitis after 10 days of acetaminophen treatment at recommended dosage in an infant, Pediatrics, vol.127, pp.494-497, 2011.

H. S. Buttar, E. A. Nera, and R. H. Downie, Serum enzyme activities and hepatic triglyceride levels in acute and subacute acetaminophen-treated rats, Toxicology, vol.6, pp.9-20, 1976.

M. Coen, E. M. Lenz, J. K. Nicholson, I. D. Wilson, F. Pognan et al., An integrated metabonomic investigation of acetaminophen toxicity in the mouse using NMR spectroscopy, Chem Res Toxicol, vol.16, pp.295-303, 2003.

M. G. Macdonald, P. P. Mcgrath, D. N. Mcmartin, G. C. Washington, and G. Hudak, Potentiation of the toxic effects of acetaminophen in mice by concurrent infection with influenza B virus: a possible mechanism for human Reye's syndrome?, Pediatr Res, vol.18, pp.181-187, 1984.

Z. Song, C. J. Mcclain, and T. Chen, S-Adenosylmethionine protects against acetaminophen-induced hepatotoxicity in mice, Pharmacology, vol.71, 2004.

M. C. Belardinelli, F. Pereira, and G. Baldo, Adult derived mononuclear bone marrow cells improve survival in a model of acetaminophen-induced acute liver failure in rats, Toxicology, vol.247, pp.1-5, 2008.

J. Hu, V. K. Ramshesh, M. R. Mcgill, H. Jaeschke, and J. J. Lemasters, Low dose acetaminophen induces reversible mitochondrial dysfunction associated with transient c-Jun N-terminal kinase activation in mouse liver, Toxicol Sci, vol.150, pp.204-215, 2016.

B. G. Gazzard, R. D. Hughes, P. J. Mellon, B. Portmann, and R. Williams, A dog model of fulminant hepatic failure produced by paracetamol administration, Br J Exp Pathol, vol.56, pp.408-411, 1975.

J. Aubert, K. Begriche, and M. Delannoy, Differences in early acetaminophen hepatotoxicity between obese ob/ob and db/db mice, J Pharmacol Exp Ther, vol.342, pp.676-687, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00864718

A. Michaut, L. Guillou, D. Moreau, and C. , A cellular model to study druginduced liver injury in nonalcoholic fatty liver disease: application to acetaminophen, Toxicol Appl Pharmacol, vol.292, pp.40-55, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01255826

H. Jaeschke and A. Ramachandran, Oxidant stress and lipid peroxidation in acetaminophen hepatotoxicity, React Oxyg Species (Apex), vol.5, pp.145-158, 2018.

M. Maes, M. Vinken, and H. Jaeschke, Experimental models of hepatotoxicity related to acute liver failure, Toxicol Appl Pharmacol, vol.290, pp.86-97, 2016.

P. C. Burcham and A. W. Harman, Acetaminophen toxicity results in site-specific mitochondrial damage in isolated mouse hepatocytes, J Biol Chem, vol.266, pp.5049-5054, 1991.

K. K. Lee, N. Imaizumi, S. R. Chamberland, N. N. Alder, and U. A. Boelsterli, Targeting mitochondria with methylene blue protects mice against acetaminopheninduced liver injury, Hepatology, vol.61, pp.326-336, 2015.

C. Cover, A. Mansouri, and T. R. Knight, Peroxynitrite-induced mitochondrial and endonuclease-mediated nuclear DNA damage in acetaminophen hepatotoxicity, J Pharmacol Exp Ther, vol.315, pp.879-887, 2005.

X. Ge, H. Hua, and P. Wang, Inhibition of mitochondrial complex I by rotenone protects against acetaminophen-induced liver injury, Am J Transl Res, vol.11, pp.188-198, 2019.

A. Mansouri, I. Gaou, D. Kerguenec, and C. , An alcoholic binge causes massive degradation of hepatic mitochondrial DNA in mice, Gastroenterology, vol.117, pp.181-190, 1999.

V. Peeva, D. Blei, and G. Trombly, Linear mitochondrial DNA is rapidly degraded by components of the replication machinery, Nat Commun, vol.9, p.1727, 2018.

D. Chen, H. M. Ni, and L. Wang, Up-regulated modulator of apoptosis induction mediates acetaminophen-induced necrosis and liver injury in mice, Hepatology, vol.69, pp.2164-2179, 2019.

K. Du, Y. Xie, M. R. Mcgill, and H. Jaeschke, Pathophysiological significance of c-jun Nterminal kinase in acetaminophen hepatotoxicity, Expert Opin Drug Metab Toxicol, vol.11, pp.1769-1779, 2015.

R. L. Esterline, S. D. Ray, and J. S. , Reversible and irreversible inhibition of hepatic mitochondrial respiration by acetaminophen and its toxic metabolite, Nacetyl-p-benzoquinoneimine (NAPQI), Biochem Pharmacol, vol.38, pp.2387-2390, 1989.

S. Prill, D. Bavli, and G. Levy, Real-time monitoring of oxygen uptake in hepatic bioreactor shows CYP450-independent mitochondrial toxicity of acetaminophen and amiodarone, Arch Toxicol, vol.90, pp.1181-1191, 2016.

V. Behrends, G. F. Giskeødegård, N. Bravo-santano, M. Letek, and H. C. Keun, Acetaminophen cytotoxicity in HepG2 cells is associated with a decoupling of glycolysis from the TCA cycle, loss of NADPH production, and suppression of anabolism, Arch Toxicol, vol.93, pp.341-353, 2019.

C. Chen, K. W. Krausz, Y. M. Shah, J. R. Idle, and F. J. Gonzalez, Serum metabolomics reveals irreversible inhibition of fatty acid b-oxidation through the suppression of PPARa activation as a contributing mechanism of acetaminophen-induced hepatotoxicity, Chem Res Toxicol, vol.22, pp.699-707, 2009.

S. Bhattacharyya, L. Pence, and R. Beger, Acylcarnitine profiles in acetaminophen toxicity in the mouse: comparison to toxicity, metabolism and hepatocyte regeneration, Metabolites, vol.3, pp.606-622, 2013.

M. R. Mcgill, F. Li, and M. R. Sharpe, Circulating acylcarnitines as biomarkers of mitochondrial dysfunction after acetaminophen overdose in mice and humans, Arch Toxicol, vol.88, pp.391-401, 2014.

H. Bi, F. Li, K. W. Krausz, A. Qu, C. H. Johnson et al., Targeted metabolomics of serum acylcarnitines evaluates hepatoprotective effect of Wuzhi tablet (Schisandra sphenanthera extract) against acute acetaminophen toxicity, Evid Based Complement Alternat Med, p.985257, 2013.

J. Yu, Y. S. Jiang, and Y. Jiang, Targeted metabolomic study indicating glycyrrhizin's protection against acetaminophen-induced liver damage through reversing fatty acid metabolism, Phytother Res, vol.28, pp.933-936, 2014.

Y. Lu, J. Sun, and K. Petrova, Metabolomics evaluation of the effects of green tea extract on acetaminophen-induced hepatotoxicity in mice, Food Chem Toxicol, vol.62, pp.707-721, 2013.

S. Bhattacharyya, K. Yan, and L. Pence, Targeted liquid chromatography-mass spectrometry analysis of serum acylcarnitines in acetaminophen toxicity in children, Biomark Med, vol.8, pp.147-159, 2014.

G. D. Lopaschuk, S. R. Wall, P. M. Olley, and N. J. Davies, Etomoxir, a carnitine palmitoyltransferase I inhibitor, protects hearts from fatty acid-induced ischemic injury independent of changes in long chain acylcarnitine, Circ Res, vol.63, pp.1036-1043, 1988.

K. G. Sim, K. Carpenter, J. Hammond, J. Christodoulou, and B. Wilcken, Acylcarnitine profiles in fibroblasts from patients with respiratory chain defects can resemble those from patients with mitochondrial fatty acid beta-oxidation disorders, Metabolism, vol.51, pp.366-371, 2002.

D. Li, Y. Du, and X. Yuan, Hepatic hypoxia-inducible factors inhibit PPARa expression to exacerbate acetaminophen induced oxidative stress and hepatotoxicity, Free Radic Biol Med, vol.110, pp.102-116, 2017.

A. Santini, D. Ronchi, M. Garbellini, D. Piga, and A. Protti, Linezolid-induced lactic acidosis: the thin line between bacterial and mitochondrial ribosomes, Expert Opin Drug Saf, vol.16, pp.833-843, 2017.

D. C. Vinh and E. Rubinstein, Linezolid: a review of safety and tolerability, J Infect, vol.59, pp.59-74, 2009.

A. S. De-vriese, R. V. Coster, and J. Smet, Linezolid-induced inhibition of mitochondrial protein synthesis, Clin Infect Dis, vol.42, pp.1111-1117, 2006.

S. Garazzino, A. Krzysztofiak, and S. Esposito, Use of linezolid in infants and children: a retrospective multicentre study of the Italian Society for Paediatric Infectious Diseases, J Antimicrob Chemother, vol.66, pp.2393-2397, 2011.

A. Hassan, O. K. Karnib, M. El-khoury, R. Nemer, G. Ahdab-barmada et al., Linezolid toxicity and mitochondrial susceptibility: a novel neurological complication in a Lebanese patient, Front Pharmacol, vol.7, p.325, 2016.

P. E. Tobias, C. A. Varughese, A. P. Hanson, and P. K. Gurnani, A case of linezolid induced toxicity, J Pharm Pract, 2019.

P. Viswanathan, D. Iarikov, R. Wassel, A. Davidson, and S. Nambiar, Hypoglycemia in patients treated with linezolid, Clin Infect Dis, vol.59, pp.93-95, 2014.

T. Song, M. Lee, and H. S. Jeon, Linezolid trough concentrations correlate with mitochondrial toxicity-related adverse events in the treatment of chronic extensively drug-resistant tuberculosis, EBioMedicine, vol.2, pp.1627-1633, 2015.

K. L. Leach, S. M. Swaney, and J. R. Colca, The site of action of oxazolidinone antibiotics in living bacteria and in human mitochondria, Mol Cell, vol.26, pp.393-402, 2007.

G. Garrabou, A. Soriano, and S. Lopez, Reversible inhibition of mitochondrial protein synthesis during linezolid-related hyperlactatemia, Antimicrob Agents Chemother, vol.51, pp.962-967, 2007.

G. Garrabou, A. Soriano, and T. Pin-os, Influence of mitochondrial genetics on the mitochondrial toxicity of linezolid in blood cells and skin nerve fibers, Antimicrob Agents Chemother, vol.61, pp.542-559, 2017.

E. E. Mckee, M. Ferguson, A. T. Bentley, and T. A. Marks, Inhibition of mammalian mitochondrial protein synthesis by oxazolidinones. Antimicrob Agents Chemother, vol.50, pp.2042-2049, 2006.

A. P. Macgowan, Pharmacokinetic and pharmacodynamic profile of linezolid in healthy volunteers and patients with Gram-positive infections, J Antimicrob Chemother, vol.51, issue.2, pp.17-25, 2003.

T. V. Milosevic, V. L. Payen, P. Sonveaux, G. G. Muccioli, P. M. Tulkens et al., Mitochondrial alterations (inhibition of mitochondrial protein expression, oxidative metabolism, and ultrastructure) induced by linezolid and tedizolid at clinically relevant concentrations in cultured human HL-60 promyelocytes and THP-1 monocytes, Antimicrob Agents Chemother, vol.62, pp.1599-1616, 2018.

L. Guillou, D. Bucher, S. Begriche, and K. , Drug-induced alterations of mitochondrial DNA homeostasis in steatotic and nonsteatotic HepaRG cells, J Pharmacol Exp Ther, vol.365, pp.711-726, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01808097

B. Fromenty, C. Fisch, and G. Labbe, Amiodarone inhibits the mitochondrial beta-oxidation of fatty acids and produces microvesicular steatosis of the liver in mice, J Pharmacol Exp Ther, vol.255, pp.1371-1376, 1990.

B. Fromenty, P. Letteron, C. Fisch, A. Berson, D. Deschamps et al., Evaluation of human blood lymphocytes as a model to study the effects of drugs on human mitochondria. Effects of low concentrations of amiodarone on fatty acid oxidation, ATP levels and cell survival, Biochem Pharmacol, vol.46, pp.421-432, 1993.

P. Chariot, I. Drogou, and I. De-lacroix-szmania, Zidovudine-induced mitochondrial disorder with massive liver steatosis, myopathy, lactic acidosis, and mitochondrial DNA depletion, J Hepatol, vol.30, pp.156-160, 1999.

U. A. Walker, N. Venhoff, E. C. Koch, M. Olschewski, J. Schneider et al., Uridine abrogates mitochondrial toxicity related to nucleoside analogue reverse transcriptase inhibitors in HepG2 cells, Antivir Ther, vol.8, pp.463-470, 2003.

N. J. Watmough, L. A. Bindoff, and M. A. Birch-machin, Impaired mitochondrial beta-oxidation in a patient with an abnormality of the respiratory chain. Studies in skeletal muscle mitochondria, J Clin Invest, vol.85, pp.177-184, 1990.

D. Pozo, J. L. , F. Andez-ros, N. Saez, E. Herrero et al., Linezolid-induced lactic acidosis in two liver transplant patients with the mitochondrial DNA A2706G polymorphism, Antimicrob Agents Chemother, vol.58, pp.4227-4229, 2014.

K. Begriche, A. Igoudjil, D. Pessayre, and B. Fromenty, Mitochondrial dysfunction in NASH: causes, consequences and possible means to prevent it, Mitochondrion, vol.6, pp.1-28, 2006.

R. E. Soccio, E. R. Chen, and M. A. Lazar, Thiazolidinediones and the promise of insulin sensitization in type 2 diabetes, Cell Metab, vol.20, pp.573-591, 2014.

S. H. Caldwell, E. E. Hespenheide, J. A. Redick, J. C. Iezzoni, E. H. Battle et al., A pilot study of a thiazolidinedione, troglitazone, in nonalcoholic steatohepatitis, Am J Gastroenterol, vol.96, pp.519-525, 2001.

T. Yokoi and . Troglitazone, Handb Exp Pharmacol, vol.196, pp.419-435, 2010.

T. Ikeda, Drug-induced idiosyncratic hepatotoxicity: prevention strategy developed after the troglitazone case, Drug Metab Pharmacokinet, vol.26, pp.60-70, 2011.

M. Fukano, S. Amano, and J. Sato, Subacute hepatic failure associated with a new antidiabetic agent, troglitazone: a case report with autopsy examination, Hum Pathol, vol.31, pp.250-253, 2000.

J. Kohlroser, J. Mathai, J. Reichheld, B. F. Banner, and H. L. Bonkovsky, Hepatotoxicity due to troglitazone: report of two cases and review of adverse events reported to the United States Food and Drug Administration, Am J Gastroenterol, vol.95, pp.272-276, 2000.

S. H. Caldwell, E. E. Hespenheide, V. Borstel, and R. W. , Myositis, microvesicular hepatitis, and progression to cirrhosis from troglitazone added to simvastatin, Dig Dis Sci, vol.46, pp.376-378, 2001.

N. L. Julie, I. M. Julie, A. I. Kende, and G. L. Wilson, Mitochondrial dysfunction and delayed hepatotoxicity: another lesson from troglitazone, Diabetologia, vol.51, pp.2108-2116, 2008.

M. Bedoucha, E. Atzpodien, and U. A. Boelsterli, Diabetic KKAy mice exhibit increased hepatic PPARg1 gene expression and develop hepatic steatosis upon chronic treatment with antidiabetic thiazolidinediones, J Hepatol, vol.35, pp.17-23, 2001.

S. M. Watkins, P. R. Reifsnyder, H. J. Pan, J. B. German, and E. H. Leiter, Lipid metabolomewide effects of the PPARg agonist rosiglitazone, J Lipid Res, vol.43, pp.1809-1817, 2002.

D. Pessayre, A. Mansouri, A. Berson, and B. Fromenty, Mitochondrial involvement in drug-induced liver injury, Handb Exp Pharmacol, vol.196, pp.311-365, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00742326

D. Bavli, S. Prill, and E. E. , Real-time monitoring of metabolic function in liver-on-chip microdevices tracks the dynamics of mitochondrial dysfunction, Proc Natl Acad Sci, vol.113, 2016.

M. Porceddu, N. Buron, C. Roussel, G. Labbe, B. Fromenty et al., Prediction of liver injury induced by chemicals in human with a multiparametric assay on isolated mouse liver mitochondria, Toxicol Sci, vol.129, pp.332-345, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00866136

D. Hu, C. Q. Wu, and Z. J. Li, Characterizing the mechanism of thiazolidinedioneinduced hepatotoxicity: an in vitro model in mitochondria, Toxicol Appl Pharmacol, vol.284, pp.134-141, 2015.

S. Nadanaciva, J. A. Dykens, A. Bernal, R. A. Capaldi, and Y. Will, Mitochondrial impairment by PPAR agonists and statins identified via immunocaptured OXPHOS complex activities and respiration, Toxicol Appl Pharmacol, vol.223, pp.277-287, 2007.

L. I. Rachek, L. V. Yuzefovych, S. P. Ledoux, N. L. Julie, and G. L. Wilson, Troglitazone, but not rosiglitazone, damages mitochondrial DNA and induces mitochondrial dysfunction and cell death in human hepatocytes, Toxicol Appl Pharmacol, vol.240, pp.348-354, 2009.

Y. Masubuchi, S. Kano, and T. Horie, Mitochondrial permeability transition as a potential determinant of hepatotoxicity of antidiabetic thiazolidinediones, Toxicology, vol.222, pp.233-239, 2006.

T. Okuda, M. Norioka, Y. Shitara, and T. Horie, Multiple mechanisms underlying troglitazone-induced mitochondrial permeability transition, Toxicol Appl Pharmacol, vol.248, pp.242-248, 2010.

M. Segawa, S. Sekine, T. Sato, and K. Ito, Increased susceptibility to troglitazoneinduced mitochondrial permeability transition in type 2 diabetes mellitus model rat, J Toxicol Sci, vol.43, pp.339-351, 2018.

P. L. Lim, J. Liu, M. L. Go, and U. A. Boelsterli, The mitochondrial superoxide/thioredoxin-2/Ask1 signaling pathway is critically involved in troglitazone-induced cell injury to human hepatocytes, Toxicol Sci, vol.101, pp.341-349, 2008.

M. A. Tirmenstein, C. X. Hu, and T. L. Gales, Effects of troglitazone on HepG2 viability and mitochondrial function, Toxicol Sci, vol.69, pp.131-138, 2002.

Y. H. Lee, W. W. Goh, and C. K. Ng, Integrative toxicoproteomics implicates impaired mitochondrial glutathione import as an off-target effect of troglitazone, J Proteome Res, vol.12, pp.2933-2945, 2013.

M. T. Smith, Mechanisms of troglitazone hepatotoxicity, Chem Res Toxicol, vol.16, pp.679-687, 2003.

K. Kassahun, P. G. Pearson, and W. Tang, Studies on the metabolism of troglitazone to reactive intermediates in vitro and in vivo. Evidence for novel pathways involving quinone methide formation and thiazolidinedione ring scission, Chem Res Toxicol, vol.14, pp.62-70, 2001.

M. A. Bae and B. Y. Song, Critical role of c-Jun N-terminal protein kinase activation in troglitazone-induced apoptosis of human HepG2 hepatoma cells, Mol Pharmacol, vol.63, pp.401-408, 2003.

N. J. Hewitt, S. Lloyd, and M. Hayden, Correlation between troglitazone cytotoxicity and drug metabolic enzyme activities in cryopreserved human hepatocytes, Chem Biol Interact, vol.142, pp.73-82, 2002.

I. Inoue, K. Takahashi, and S. Katayama, Effect of troglitazone (CS-045) and bezafibrate on glucose tolerance, liver glycogen synthase activity, and betaoxidation in fructose-fed rats, Metabolism, vol.44, pp.1626-1630, 1995.

J. P. Fulgencio, C. Kohl, and J. Girard, Troglitazone inhibits fatty acid oxidation and esterification, and gluconeogenesis in isolated hepatocytes from starved rats, Diabetes, vol.45, pp.1556-1562, 1996.

C. Fürnsinn, B. Brunmair, S. Neschen, and M. Roden, Waldh? ausl W. Troglitazone directly inhibits CO 2 production from glucose and palmitate in isolated rat skeletal muscle, J Pharmacol Exp Ther, vol.293, pp.487-493, 2000.

M. Yokoyama, Y. Izumiya, M. Yoshizawa, and R. Usuda, Acute rhabdomyolysis associated with troglitazone, Diabetes Care, vol.23, pp.421-422, 2000.

I. Watanabe, A. Tomita, and M. Shimizu, A study to survey susceptible genetic factors responsible for troglitazone-associated hepatotoxicity in Japanese patients with type 2 diabetes mellitus, Clin Pharmacol Ther, vol.73, pp.435-455, 2003.

R. Kumashiro, T. Kubota, and Y. Koga, Association of troglitazone-induced liver injury with mutation of the cytochrome P450 2C19 gene, Hepatol Res, vol.26, pp.337-342, 2003.

J. Massart, K. Begriche, C. Moreau, and B. Fromenty, Role of nonalcoholic fatty liver disease as risk factor for drug-induced hepatotoxicity, J Clin Transl Res, vol.3, pp.212-232, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01580159

A. Mansouri, C. H. Gattolliat, and T. Asselah, Mitochondrial dysfunction and signaling in chronic liver diseases, Gastroenterology, vol.155, pp.629-647, 2018.

K. Lee, A. Haddad, and A. Osme, Hepatic mitochondrial defects in a nonalcoholic fatty liver disease mouse model are associated with increased degradation of oxidative phosphorylation subunits, Mol Cell Proteomics, vol.17, pp.2371-2386, 2018.

A. Granitzny, J. Knebel, and M. Müller, Evaluation of a human in vitro hepatocyte-NPC co-culture model for the prediction of idiosyncratic druginduced liver injury: a pilot study, Toxicol Rep, vol.4, pp.89-103, 2017.

A. Piriou, R. Maissiat, A. Jacqueson, J. M. Warnet, and J. R. Claude, Ultrastructural changes in the parenchymal liver cells of rats treated with high doses of rifampicin, Br J Exp Pathol, vol.68, pp.201-207, 1987.

J. H. Huang, C. Zhang, D. G. Zhang, L. Li, X. Chen et al., Rifampicin-induced hepatic lipid accumulation: association with up-regulation of peroxisome proliferator-activated receptor g in mouse liver, PLoS One, vol.11, p.165787, 2016.

I. Simões, A. Fontes, P. Pinton, H. Zischka, and M. R. Wieckowski, Mitochondria in non-alcoholic fatty liver disease, Int J Biochem Cell Biol, vol.95, pp.93-99, 2018.

N. E. Sunny, F. Bril, and K. Cusi, Mitochondrial adaptation in nonalcoholic fatty liver disease: novel mechanisms and treatment strategies, Trends Endocrinol Metab, vol.28, pp.250-260, 2017.

N. Alkhouri, L. J. Dixon, and A. E. Feldstein, Lipotoxicity in nonalcoholic fatty liver disease: not all lipids are created equal, Expert Rev Gastroenterol Hepatol, vol.3, pp.445-451, 2009.

F. Marra and G. Svegliati-baroni, Lipotoxicity and the gut-liver axis in NASH pathogenesis, J Hepatol, vol.68, pp.280-295, 2018.

C. S?-oderberg, J. Marmur, and K. Eckes, Microvesicular fat, inter cellular adhesion molecule-1 and regulatory T-lymphocytes are of importance for the inflammatory process in livers with non-alcoholic steatohepatitis, APMIS, vol.119, issue.412, 2011.

S. Tandra, M. M. Yeh, and E. M. Brunt, Presence and significance of microvesicular steatosis in nonalcoholic fatty liver disease, J Hepatol, vol.55, pp.654-659, 2011.