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 

Abstract— Multi-beam antennas based on quasi-optical systems feeding 

a single radiating aperture generate orthogonal beams with a low cross-

over level between adjacent beams (around -13 dB at most). To circumvent 

this limitation, we present a circuit architecture allowing the excitation of 

a quasi-optical system (pillbox system) with two feeds per beam to reach 

much higher beam cross-over levels. To this end, a specific 8-beam passive 

circuit is designed to cover the 76-86 GHz frequency band. It is based on a 

single-layer substrate integrated waveguide (SIW) coupler followed by 

equi-phase SIW lines. The maximum phase and amplitude imbalance 

between the sources are only 35° (𝝀𝒈 𝟏𝟎⁄ , with 𝝀𝒈 the wavelength in the 

SIW lines at the design frequency) and 1.3 dB respectively, and the 

isolation is better than -19dB. The measured beam cross-over level of the 

corresponding antenna is better than -3.2 dB, corresponding to an 

improvement of 16 dB with respect to single-feed-per-beam pillbox 

systems. The proposed passive architecture offers beam cross-over levels 

suitable for low-cost electronically controlled multi-beam applications, as 

for next-generation 5G backhauling systems. 

Index Terms— Cross-over level, multi-beam antennas, 

multiple-feeds-per-beam, pillbox, SIW technology. 

I. INTRODUCTION 

 Electronically-controlled multi-beam antennas are required in many 

high-gain applications such as radar systems, satellite 

communications, or next-generation cellular networks, etc. Phased 

arrays [1] are the most agile solution, and yet for high gain applications 

at millimeter-wave frequencies (automotive radars, 5G fronthaul and 

backhaul antennas, etc.) the required large number of phase shifters 

make them complex and lossy. On the other hand, passive beam 

formers are usually more efficient and easier to fabricate at a lower 

cost but with limited performance in terms of scanning [2]. In this 

paper, we investigate an innovative multiple-feed-per-beam 

architecture made of a continuous transverse stub (CTS) antenna fed 

by a pillbox system [3]. The system is designed in E-band (71-86 

GHz). The antenna was originally described with a single fixed beam 

in [4], and its architecture is briefly recalled in Section II.A. 

 The pillbox coupler is a beam former based on a 2D parabolic 

reflector integrated in a parallel plate waveguide (PPW) environment. 

Beam scanning can be easily obtained by simply displacing the feeding 

source in the focal plane of the parabolic reflector.  

 The maximum cross-over level between consecutive beams 

achievable with passive beam formers (either circuit-based or quasi-

optical systems) is subject to physical limitations [2], [5], [6]. More 

specifically, [7] shows that classical pillbox antennas with one-feed-

per-beam (1FPB) achieve a cross-over level of around -19 dB with 

negligible losses. This level cannot be improved without encountering 

a significant rise of the edge tapering, thus leading to a higher side lobe 
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level (SLL), important spillover loss, and significant degradation of the 

antenna efficiency. More precisely, we show here that a cross-over 

level between adjacent beams higher than -13 dB cannot be produced 

without a rise of the spillover loss to more than 1.5 dB (see Section 

III). To circumvent this limitation, a practical solution consists in 

adopting two separate radiating apertures generating two interleaved 

sets of beams, as reported in [7] and [8]. This solution provides a beam 

cross-over level in the -3 dB range with clean patterns, but at the cost 

of a reduced aperture efficiency and increased footprint of the antenna 

system. Another simpler solution to improve the beam cross-over level 

consists in using multiple focal feeds per beam as in [9] for classical 

parabolic reflectors. 

 In this paper, we investigate the use of overlapping focal sources for 

a non-tapered two-feed-per-beam (2FPB) excitation for high cross-

over between consecutive beams. This approach differs significantly 

from [9] since the latter uses a tapered power repartition among the 

feeds, resulting in a cross-over level limitation. The beam overlapping 

is achieved by designing a novel beam interlacing circuit (BIC) based 

on passive couplers in SIW technology. The concept is applied to an 

8-beam antennas at E-band with a high cross-over level. 

To the best of our knowledge, this is the first time that a passive 

circuit achieves a non-tapered multiple-feed-per-beam excitation with 

less than 3 dB loss. This enables to realize a high beam cross-over level 

with a single radiating aperture. 

 The paper is organized as follows. In Section II, the antenna 

architecture is presented for single- and multi-feed-per-beam solutions. 

Section III explains why a multiple-feed-per-beam excitation is 

needed, while Section IV presents the BIC design allowing high cross-

over levels. In section V, the fabrication, simulation and measurement 

results are provided. Finally, conclusions are drawn in Section VI. 

II. ANTENNA ARCHITECTURE

A. Single-feed-per-beam antenna 

The single-feed-per-beam antenna was originally described in [4]. It is 

illustrated in Fig. 1. It comprises 32 radiating slots consisting of 

vertically-oriented truncated PPWs supporting a quasi-TEM mode. 

This CTS array is fed by a PPW-based corporate feeding network in 

metal-only technology. This feeding scheme shapes the beam in E-

plane. The pillbox system, placed horizontally underneath the 

corporate network, generates the line-source excitation needed to feed 

the corporate feeding network and shapes the main beam in H-plane. 

It is realized on a two-layer PCB board (0.508 mm-thick Rogers 3003, 

with 𝜀𝑟 = 3.08 and tan⁡(δ) = 0.0010 at 78.5 GHz). The pillbox

parabolic reflector and focal horn are realized in SIW technology. A 

multi-slot coupler is implemented to connect the input and output 

PPWs. The diameter D and focal length F of the parabolic reflector 

equal 80 mm and 50 mm, respectively. A specific PCB/Air transition 
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is used to combine the two modules. The antenna is fed by a standard 

WR12 waveguide through a WR12-to-SIW transition. Measurements 

showed that the antenna covers the 71-86 GHz band with a reflection 

coefficient lower than -13.5 dB and a realized gain higher than 29.3 

dBi. The measured peak gain was 30.8 dBi at 82.25 GHz. 

(a) 

(b) 

Fig. 1: Single-feed-per-beam antenna [4]: cross-section (a) and bottom (b) 

views. 

B. Multi-feed-per-beam antenna 

An overview of the antenna presented in this paper is shown in Fig. 

2. The slot array, the corporate feeding network, the PCB-air transition,

the pillbox system and the input transitions are identical to those 

described in [4]. The main innovation relies on the new BIC and the 

pillbox focal array, both fabricated in PCB technology. It is worth 

picturing the antenna as the cascade of three independent functional 

parts: 

 The pillbox system excited by the BIC is responsible for the

radiation pattern in H-plane (i.e. yz plane),

 The corporate feeding network controls the radiation pattern in E-

plane (i.e. xz plane),

 The slot array radiates in free space the mode guided by the

corporate feeding network.

This implies that the radiation patterns along the E-plane of the single- 

and multi-feed-per-beam antennas are identical.  

III. MULTI-BEAM PILLBOX

(a) (b) 

Fig. 4: Beam crossover level (a) and spill over loss (b) as a function of the 
F/D ratio and the horn width for the 1FPB excitation. 

(a) (b) 

Fig. 5: Beam crossover level (a) and spill over loss (b) as a function of the 
F/D ratio and the horn width for the 2FPB excitation. 

 In multi-beam pillbox designs, a trade-off must be found between 

the spillover loss and the beam cross-over level. To do so, the design 

variables are the parabola diameter D, the focal length F and the horn 

aperture width l, as depicted in Fig. 3 (a). 

 The cross-over level depends on the angular separation between the 

beams, i.e. the distance between the phase centers of the focal sources. 

For a fixed value of F, the closer the sources, the higher the cross-over 

level. On the other hand, the spillover loss depends on the illumination 

of the parabolic reflector by the focal sources. For a fixed F/D ratio, 

the wider the sources, the lower the spillover is. However, the sources 

being arranged side by side, the width of the focal sources is limited 

by the periodicity of the focal array. Therefore small focal sources 

allows a close arrangement, resulting in a high cross-over level, at the 

expense of important spillover loss, and inversely, wide sources lead 

to reduced spillover loss at the expense of a low cross-over level 

because of the large distance between the sources. 

 A Geometrical Optics (GO) tool was implemented to define the best 

trade-off between the various parameters providing a cross-over level 

higher than -3 dB with less than 1.5 dB spill-over loss. The results are 

shown in Figs. 4 and 5 at 78.5 GHz as a function of the focal length to 

parabola diameter ratio F/D and the focal source width l. 

(a) 

(b) 

Fig. 2: Multi-feed-per-beam antenna: cross-section (a) and bottom (b) 

views. 

(a) (b) 

Fig. 3: Pillbox system and equivalent feeding aperture for each beam 
(schematic for a 4-beam antenna): (a) one-feed-per-beam (1FPB) excitation; 

(b) two-feed-per-beam (2FPB) excitation (in this case, the same feed horn is 

shared by two beams). 
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 The results obtained for the classical 1FPB architecture (Fig. 3 (a)) 

are represented in Fig. 4. A cross-over level better than -13 dB cannot 

be obtained without significant spillover loss (beyond 1.5 dB). 

 Using a 2FPB excitation allows to enhance the directivity of the 

focal sources while keeping the same distance between them. Each 

source is shared between two adjacent beams, as schematized in Fig. 3 

(b). The results using this configuration are shown in Fig. 5. A cross-

over level better than -3 dB can be obtained for any source width l with 

a F/D ratio higher than 0.6. However, the spillover loss is higher for 

wider sources due to the appearance of grating lobes. For this reason, 

the sources are designed with the smallest width (0.6×λd) to guaranty 

a proper TE10 mode propagation over the full 71-86 GHz bandwidth. 

The F/D ratio is then set to 0.625 as a trade-off between the spillover 

loss and cross-over level. Note that in order to insure a proper 

compatibility between the building blocks, the parabola diameter D has 

to match the radiating slot length (80) mm, thus leading to a focal 

length of 50 mm. This 2FPB configuration is expected to provide a -2 

dB crossover level with only 1.5-dB spillover loss. This is extremely 

advantageous as compared to the -13 dB cross-over with identical 

spillover loss provided by the 1FPB configuration. 

IV. BIC DESIGN

A. BIC Architecture 

Fig. 6: Schematic view of the BIC. 

Fig. 7: Designed 8-beam BIC. 

 A BIC is needed to obtain the 2FPB excitation, as schematized in 

Fig. 6. It comprises 8 input ports (Beam ports), corresponding to the 8 

radiated beams, and 9 outputs ports connected to the 9 focal sources. 

To guarantee a proper excitation of the beams, two conditions must be 

satisfied: 

 The two active outputs must be excited with the same

amplitude and phase,

 The inactive input and output ports must be well isolated

(below -15dB) to avoid interferences.

 However obtaining this behavior with a lossless passive 

system is not feasible [5], [6]. For a reduced antenna 

complexity, active components are avoided and a passive but 

slightly lossy solution is thus preferred here. 
 The BIC developed here (Fig. 7) is realized on a single substrate 

with standard SIW technology (0.508 mm-thick Rogers 3003, with 

𝜀𝑟 = 3.08 and tan⁡(δ) = 0.0010 at 78.5 GHz), and is composed of a

coupler followed by equi-phase SIW lines. Dummy ports are placed at 

the terminations of the unused coupler outputs. This simple solution 

provides a true non-tapered 2FPB excitation for reduced beam cross-

over level with less than 2 dB theoretical losses, as shown in the 

following. For comparison, in [10] the authors proposed a network 

architecture based on power dividers and 3 dB couplers that provides 

3 dB theoretical loss in the resistive terminations of the couplers. 

B. Coupler 

The SIW coupler designed here is presented in Fig. 8 (a). Adjacent 

waveguides are separated by metallized via holes behaving like 

partially reflecting walls. In this way, the TE10 mode coming from the 

input waveguide couples energy to the adjacent waveguides while 

propagating. The operation mechanism is similar to the one described 

in [11], and a very accurate analytical model is provided in the 

appendix. The symmetry of the structure implies that feeding the 

coupler by one input will excite the two adjacent waveguides with 

exactly the same phase and amplitude. Therefore, the beam 

overlapping function can be achieved by feeding one out of every two 

waveguides, as depicted in Fig. 7. 

 The waveguides are sized as wide as possible (1.9mm) to shorten 

the wavelength of the TE10 mode, in order to reduce the overall size of 

the system. Likewise, using wide gaps between the vias (0.95mm) 

improves the coupling, as well as using small vias (0.1mm in 

diameter). The coupled power can be controlled by tuning the number 

of coupling gaps, as shown in Fig. 8 (b). The coupler designed here 

includes 18 coupling gaps. This configuration provides the highest 

power coupled to the adjacent waveguides (65% of the input power). 

The rest of the power either remains in the input waveguide, or couples 

to more external waveguides. 

C. Equi-phase SIW lines and focal sources 

 The focal sources are realized by open-ended SIW lines of 1.3 mm 

width (see Fig. 7) and the vias have a diameter of 0.35 mm with a pitch 

of 0.5 mm. These sources are connected to the coupler outputs through 

SIW lines, as depicted in Fig. 7 and Fig. 9 (a). Since the sources are 

used in pairs, they need to be fed in-phase. Therefore the SIW-lines 

must be equi-phase in order to preserve the phase uniformity between 

the coupler outputs. Unfortunately, a slight difference between their 

physical lengths is unavoidable to arrange them in a compact fashion: 

they range from 16mm for the external SIW lines to 13mm for the 

central one (see Fig. 9 (a)). The phase-shift created by the length 

differences is lower than 110°, and it is easily compensated by 

modifying the width of the lines (from 1.6 mm for the external lines to 

2 mm for the central one). 

A phase difference lower than 35° (corresponding to 
λ𝑔

10
with λ𝑔=

2.5mm at 78.5GHz) is obtained from 76 to 86 GHz between two 

adjacent lines. This guarantees the in-phase excitation of the two side-

by-side active sources, thus illuminating the parabolic reflector with a 

clean and symmetrically tapered power distribution. 

(a) (b) 
Fig. 8: SIW coupler (a) and power coupled to the two adjacent waveguides 

as a function of the number of coupling gaps (b). 
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D. 45° reflectors and etched radiating slots 

Fig. 9: Equi-phase SIW lines and dummy port realized by a radiating slot. 

 As it can be seen in Fig. 8, 35% of the input accepted power is not 

properly coupled to the adjacent waveguides. This power must be 

evacuated to avoid internal reflections which would result in 

appearance of standing waves, thus altering the proper operation of the 

entire system. The very simple solution proposed here consists in 

radiating this unwanted power toward the edges or the backside of the 

antenna. Even though this has very little effect on the radiation 

patterns, the use of resistive materials may be an alternative option to 

prevent from back-radiation for sensitive applications. 

 45° reflector walls are placed on both sides of the SIW lines to 

redirect the unwanted power towards the open-ended edges of the 

PCB, where it is then radiated into free space. Since such a solution is 

not applicable to the waveguides embedded between the SIW lines, 

radiating slots are used. A single radiating slot placed at the tapered 

short-circuit termination of the waveguides (Fig. 9 (b)) is sufficient to 

keep the reflection coefficient below -15 dB over the full bandwidth. 

V. ANTENNA PERFORMANCES 

(a) 

(b) (c) 

Fig. 10: Fabricated prototype: PCB of the antenna with 2FPB excitation (a), 

rear-view of the entire antenna module (b) and top-view of the antenna 

module (c). 

(a) (b) 

(c) (d) 

Fig. 11: Measured (solid curves) and simulated (dotted curves) radiation 

patterns in H-plane using the 8-beam BIC: at 76 GHz (a), 79 GHz (b), 82 
GHz (c) and 86 GHz (d). 

 The final PCB module is presented in Fig. 10 (a). Only 4 WR12-to-

SIW input transitions, identical to the one presented in [4], were 

implemented for space constraints. These input ports corresponds to 4 

different beams pointing at positive elevation angles. However, the 

symmetry of the entire antenna guarantees similar performance for the 

4 remaining beams (negative elevation angles). The input transitions 

are connected to the BIC inputs by means of SIW lines of various 

length (from 11 mm to 36 mm), causing losses between 0.4 dB and 1.5 

dB, respectively. The antenna was fabricated and assembled using the 

PCB-air hybrid technology described in [4]. The slot array and 

corporate feed network are made by milling aluminum pieces that are 

assembled using screws and pins. This process guarantees a fabrication 

accuracy and an assembly alignment both in the 10µm range. The PCB 

board containing the pillbox system and the BIC is placed underneath, 

and a specific transition is used to make the two blocks compatible: 

quarter-wavelength chokes are used to avoid leakage in case of 

misalignment between the different antenna pieces. More details can 

be found in [4]. 

 The prototype (Fig. 11 (b) and (c)) was characterized experimentally 

at IETR with a compact antenna test range, and the simulation results 

presented for comparison in Fig. 11 were obtained with Ansys HFSS 

version 19.2. Good agreement is obtained from 76 GHz to 86 GHz and 

for all the beams. The difference in gain between simulations and 

measurements is in the range of 0.2-2.7 dB in the operating band. This 

is attributed to fabrication inaccuracies and assembly misalignments. 

In details, inaccuracies in the 30µm range at the equi-phase SIW lines 

level result in about 70° phase difference between adjacent focal 

sources. As a result, the parabolic reflector illumination is deteriorated, 

the antenna directivity is lowered and the spillover loss increases. The 

gain is stable over the frequency band and among the beams varying 

from 22.3 dBi to 25.7 dBi. The different lengths of the feeding lines 

are partly responsible for the gain difference among the beams. The 

antenna provides an angular coverage of ±13° with 8 beams, and the 

beam cross-over is less than 3.2 dB. The SLL remains below -10 dB 

and the cross-polarization level is lower than -35 dB. Table I compares 

the proposed 2FPB antenna performance with state-of-the-art 

millimeter-wave antennas. For a fair comparison, these results do not 

take into account the losses entailed by feeding features (long input 

lines and active beam switching components). It emerges that the 

proposed antenna system produces one of the lowest beam cross-over 

level. The antenna presented in [8] achieves a similar cross-over level 

but at the expense of a very large system with only about 41% aperture 
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efficiency. On the other hand, the antenna architecture introduced here 

has an aperture efficiency close to 70% since the same radiating 

aperture is used for all beams. 

 The pillbox excitation has no effect on the E-plane radiation pattern, 

only driven by the corporate feeding network and the slot array. The 

half-power beamwidth in E-plane varies from 3.5° at (76 GHz) to 2.9° 

at (86 GHz) and the SLL is in the -13 dB range [4]. 

VI. CONCLUSIONS

 We designed a multi-feed-per-beam circuit in PCB technology to 

illuminate the pillbox coupler of a multi-beam CTS array. Multi-feed-

per-beam systems, in contrast to single-feed-per-beam counterparts, 

are shown to provide high cross-over level between consecutive 

beams, thus offering an enhanced radio coverage. An 8-beam antenna 

using two-feeds-per-beam approach was designed, fabricated and 

characterized over the 76-86 GHz band. Experimental results validated 

the concept showing an angular coverage of ±13° with a beam cross-

over of -3.2 dB. This corresponds to a 16 dB improvement compared 

to a classic 1FPB pillbox-based antenna [7]. The total losses of the BIC 

are about 3 dB; and according to simulations, using low-loss materials 

or metal-only technologies could reduce the BIC overall loss to only 

1.9 dB.  

 The proposed architecture can be used with integrated quasi-optical 

systems. It is key-enabler for single aperture electronically switchable 

antennas with a high beam cross-over level. This system is suitable for 

E-band 5G backhauling applications in which multiple beam coverage 

is necessary to insure a proper antenna alignment at any time, even in 

case of inaccurate positioning or disturbing weather conditions. It is 

also a relevant solution for radar systems and on-board antennas. 

APPENDIX 

Fig. 12: Schematic of the analyzed structure. 

 The structure of the waveguide coupler is depicted in Fig. 12. It only 

comprises 7 input and output waveguides and is surrounded by perfect 

electric conductor (PEC) boundaries. It is assumed that the coupler is 

excited by the central waveguide (waveguide 4) and that the power 

reaching the PEC boundaries is negligible (lower than -12dB). This 

means that the length and the width of the coupler allows a complete 

power transfer between the inputs and outputs. 

The S-matrix calculation consists in three steps: 

 Derivation of the propagation constants of the transmitted

propagating modes within the coupling region.

 Derivation of the amplitude and phase of the transmitted and

reflected modes.

 Superposition of the propagating modes in the coupling

region.

A. Propagating modes in the coupling region 

Fig. 13: Equivalent circuit of the cross-section (in the yz plane) of the 

coupler region. 

 The determination of the modes propagating in the coupler region 

is an extension of the analysis of the transvar coupler proposed in [11]. 

Only TE modes are considered. The rows of vias are modeled as 

inductors whose impedance Z(ky) is provided in [15]. A transverse 

resonance technique is then enforced to the equivalent circuit in Fig. 

13 to derive the propagation constants of the propagating modes along 

y axis (ky). It is found that 7 transverse electric modes can propagate 

within the coupler region. In the following, their amplitude distribution 

along y is called Cm(y), with m an integer number from 1 to 7. 

B. Excitation of the coupler 

 The mode amplitudes are obtained by enforcing the continuity of 

the field along the R plane. The structure is fed from the central 

waveguide with a TE10 mode. The transmitted modes travelling within 

the coupler region can be expressed as 

𝐸𝑧
𝑡 = ∑ 𝑉𝑚

𝑡𝐶𝑚(𝑦)𝑒
−𝑗𝑘𝑥𝑚

𝑡 𝑥

7

𝑚=1

 (1) 

𝐻𝑦
𝑡 = ∑

𝑉𝑚
𝑡

𝑍𝑚
𝑡 𝐶𝑚(𝑦)𝑒

−𝑗𝑘𝑥𝑚
𝑡 𝑥

7

𝑚=1

 (2) 

where 𝑉𝑚
𝑡  is the unknown complex coefficient of the mth transmitted 

mode in the coupling region, 𝑘𝑥𝑚
𝑡  is the propagation constant along x,

and 𝑍𝑚
𝑡  is the associated wave impedance. 

 Similarly, the reflected modes travelling backward within the input 

waveguides can be written as 

𝐸𝑧
𝑟 = ∑∑𝑉𝑔𝑛

𝑟 sin (
𝑛𝜋(𝑦 − 𝑎(𝑔 − 1))

𝑎
)𝛱𝑔(𝑦)𝑒

𝑗𝑘𝑥𝑛
𝑟 𝑥

∞

𝑛=1

7

𝑔=1

 (3) 

𝐻𝑦
𝑟 = ∑∑

𝑉𝑔𝑛
𝑟

𝑍𝑔𝑛
𝑟 sin (

𝑛𝜋(𝑦 − 𝑎(𝑔 − 1))

𝑎
)𝛱𝑔(𝑦)𝑒

𝑗𝑘𝑥𝑛
𝑟 𝑥

∞

𝑛=1

7

𝑔=1

 (4) 

where 𝑉𝑔𝑛
𝑟  is the unknown complex coefficient of the nth reflected mode

in the waveguide g,⁡𝑘𝑥𝑛
𝑟  is its propagation constant along x, 𝑍𝑔𝑛

𝑟  is the

TABLE I: COMPARISON WITH STATE-OF-THE-ART MILLIMETER-WAVE MULTI-BEAM ANTENNAS 

Ref. Antenna type 

Freq. 

band 

(GHz) 

Peak 

gain 

(dBi) 

Beam cross-

over (dB) 

Aperture 

efficiency 

(%) 

Size (λ0
3) 

[12] Rotman lens + patch array 57-65 n.a -4 n.a 6 × 5 × 0.06 

[13] Multi-reflector pillbox + open-ended PPW 186 36.5 -13.5 n.a. 400 × 400 × 

0.3 

[14] Butler matrix + slot array 28-31 16 -6 n.a 4 × 1.2 × 0.5 

[8] Dual-pillbox system + CTS 57-66 14.7 -3 41% 20 × 10 × 0.6 

This work Pillbox system + CTS array (2FPB) 76-86 25.7 -3.2 67% 43 × 25 × 9 
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associated wave impedance and 𝛱𝑔(𝑦)=1 within the area of waveguide

g and is null elsewhere. 

As an example, we consider the excitation of the coupler by an incident 

TE10 mode in guide 4 with a unitary electric field amplitude. The 

continuity of the fields along the R plane is then expressed by 

𝛱4(𝑦) sin (
𝜋(𝑦 − 3𝑎)

𝑎
) + 𝐸𝑧

𝑡 = 𝐸𝑧
𝑟 (5) 

𝛱4(𝑦)

𝑍𝑔𝑛
𝑟 sin (

𝜋(𝑦 − 3𝑎)

𝑎
) − 𝐻𝑦

𝑡 = 𝐻𝑦
𝑟 (6) 

where the left-hand side expresses the modes propagating towards 

positive x and the right-hand side expresses the modes propagating 

towards negative x. 

By testing (5) with the function Cp(y) with p an integer from 1 to 7, 

and (6) by sin (
𝑞𝜋(𝑦−𝑎(ℎ−1))

𝑎
)𝛱ℎ yields:

α4p1+∑∑𝑉𝑔𝑛
𝑟 αgpn

∞

𝑛=1

7

𝑔=1

= 𝑉𝑝
𝑡γ𝑝 (7) 

𝛿ℎ4
2𝑍4𝑞

𝑟 −
𝑉ℎ𝑞
𝑟

2𝑍ℎ𝑞
𝑟 = ∑

𝑉𝑚
𝑡

𝑍𝑚
𝑡 αhmq

𝑁𝑚

𝑚=1

(8) 

 where 

αgmn = ∫ Cm(y)sin (
𝑛𝜋(𝑦 − 𝑎(𝑔 − 1))

𝑎
) dy

𝑦=𝑔𝑎

𝑦=(𝑔−1)𝑎

 (9) 

γm = ∫ Cm(y)²dy
𝑦=7𝑎

𝑦=0

(10) 

and 𝛿𝑖𝑗 is the Kronecker delta.

 By using (8) into (7), the amplitude coefficients of the modes 

travelling in the coupler region [𝑉𝑡] can be calculated from the

following linear system 

([𝐷] + [𝐼][γ])[𝑉𝑡] = [𝐺] (11) 

where 

𝐷𝑖𝑗 = ∑∑
𝑍𝑔𝑛
𝑟 αgjnαgjn

𝑍𝑗
𝑡𝑍𝑛

𝑡

∞

𝑛=1

7

𝑔=1

(12) 

G𝑖 = α4i1 +∑
𝑍𝑔𝑛
𝑟 α4in𝑍4𝑛

𝑟

𝑍41
𝑟 𝑍𝑛

𝑡

∞

𝑛=1

(13) 

and [I] is the identity matrix. The mode amplitudes 𝑉𝑔𝑛
𝑟  can be obtained

using (5) or (6). 

C. Superposition of the propagating modes 

 The power transmitted to the outputs is computed as a function of 

the length of the coupler by integrating the field along the cross-section 

of each output waveguide. The transmitted power between two 

adjacent waveguides is shown in Fig. 14 and compared to full-wave 

simulations, with the exact same dimensions as in Section 0. The 

agreement is excellent, validating the proposed approach. 

 It is worth mentioning that the reflections occurring at the S plane 

are neglected since lower than -35 dB. However, a complete rigorous 

analysis of the system would be possible by applying the opportune 

boundary conditions and field continuity along S. 

Fig. 14: Power present in the input waveguide (red curves), and power 

coupled to the first and second adjacent waveguides (blue and green curves, 

respectively) as functions of the coupler length. Comparison between the 
results obtained with the presented method (solid curves) and with full-wave 

simulations (dashed curves).  
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