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In this paper, we propose the implementation of a triangular mesh along with Rao-Wilton-Glisson (RWG) basis functions to improve 

the performance and flexibility of a mixed Mode-Matching (MM) / Method of Moment (MoM) algorithm dedicated to Substrate 
Integrated Waveguide (SIW) antennas analysis and optimization. These basis functions represent equivalent magnetic currents  on either 
coupling or radiating apertures. In the initial implementation, entire domain sine basis function were presented, providing fast and 
accurate simulations for electrically thin rectangular slots. In order to treat wider slots and other geometries, we introduce here RWG 
functions, present the theoretical framework of this approach and highlight its potential through concrete examples. 
 

Index Terms— Method of moments, Mode matching methods, Slot antennas 

I. INTRODUCTION 
N recent years, planar microwave and millimeter-wave 
passive circuits have become increasingly critical parts of 

communication and imaging systems. In particular, the 
requirement for low-cost highly directive antennas has drawn 
attention to the substrate integrated waveguide (SIW)[1] 
technology. This led to the design of  multilayer radiating SIW 
structures [2] of large electrical dimensions with many small 
apertures and metallic pins. As a result, the optimization of such 
structures with commercial full-wave codes is often proving to 
be a very time consuming and tedious task. While the latest 
general purpose methods such as in [3] are probably very 
attractive in this context, we proposed in [4] a dedicated hybrid 
MM/MoM which takes full advantage of the redundant 
geometrical properties of this structures, such as the presence 
of only cylindrical diffracting elements. Furthermore, the use of 
sine-shaped basis functions for the aperture currents provided a 
very accurate result for electrically thin slot geometries. 
However, it but was unable to deal with non-rectangular slots, 
or wide and longer slots exhibiting more complex currents 
distributions. 

In this paper, we propose to add linear basis functions defined 
on triangular domains [5] (RWG), to deal with such cases. In 
Section II a general description of the hybrid code is given, 
followed by a more specific focus on the implementation of the 
coupling for RWG functions. In Section III, two examples are 
presented to highlight the advantages and limitations of both 
basis function types, while comparing the results to that of 
commercial software. Finally, conclusions are drawn.  

II. THEORETICAL FORMULATION 

A. General considerations 
First, as explained in [3], the code relies on the combination 

of two numerical methods. The generic single-layer 
configuration is illustrated in Fig. 1. A MM is used to enforce 
the boundary conditions on metallic and/or dielectric cylinders 

connecting horizontal metallic plates. In the meantime, 
apertures on these metallic plates are represented by equivalent 
magnetic currents and the fields are solved through the MoM. 
In this latter procedure, the equivalent  currents M are expressed 
on a set of Nb basis functions bn(r) such as: 

 
1

( ) ( )
bN

n n
n

v
=

= ∑M r b r   (1) 

Then, a Galerkin scheme provides the current amplitudes vn 
 by solving the following linear system, where Y is the coupling 
matrix and I is the so-called forcing term. 

 ⋅ =Y V I   (2) 

The coupling matrix elements are decomposed into a sum of 
three terms: the first term is related to the half-space (HS) 
propagation, the second to the guided parallel-plate waveguide 
(PPW) modes, and the third results from the diffraction by the 
posts inside the structure.  
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For each integral term, the proper Green’s function for 
magnetic currents is employed, i.e. GHS, GPPW, or GPosts, 
respectively. Test and source currents domain are S’ and S, 
while ε0 and ε  are the vacuum and substrate electrical 
permittivities, and ω is the angular frequency. 
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Fig. 1. General configuration for the single layer version of the 

electromagnetic problem. 
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 Finally, the forcing terms are the dot products of the incident 
magnetic field Hinc and test functions. Hinc is produced by a 
coaxial or waveguide source represented by a equivalent 
magnetic current Ms in the absence of slots, it is computed 
through the SIW Green’s function, which is the sum of PPWG

and PostsG ([3]). 
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The initial entire domain (ED) basis function set was based 
on a sine expansion, in particular, the current on the q-th slot was 
written as: 

  ,
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Note that the current (5) is directed along the slot length Lq (u-
axis) without variation along its width Wq, as shown on Fig. 2(a). 

In this paper, we propose to hybridize the basis function set 
by adding piecewise linear variations on triangular domains, 
commonly known as RWG functions [5]. In particular, a basis 
function bn is defined on two adjacent triangles Tn

+ and Tn
-, of 

respective areas An
+ and An

-, sharing a common edge of length 
ln. In each triangle, the vertex diametrically opposed to the 
common edge is denoted rn±. Suitable normalization constants 
ensure the continuity of the current component normal to the 
common edge: 
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A geometrical description of (6) is given in Fig. 2 (b). 
B. Coupling matrix computation 

We will focus here on the RWG basis functions, which 
constitute the novel part of this work. RWG basis functions are 
defined on pairs of triangles, so that each triangle can be part of 
up to three basis functions, inducing redundancy in the coupling 
terms. To avoid useless computation, the coupling is therefore 
computed between triangles. We will mainly deal here with the 
HS and PPW contributions, as the post diffraction is handled in 
the exact same way as in [4].  

Two terms, , /
,

s HS PPWCα β   and , /
, , ,

v HS PPW
i jCα β  , related to both scalar 

and vector potentials are defined as follows:   
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In these equations, α and β denote the triangles Tα and Tβ 
while 𝑖𝑖, 𝑗𝑗 ∈ [1,3] indicates the considered free vertices. Finally, 
denormalized linear basis functions are defined as 

( )i i
α αΛ = −r r r   and ( )j j

β βΛ = −r r r  , while / , )(HS PPWg ′r r  is 
the scalar Green’s function. To obtain (7)-(8) these equations, 
the differential operator ∇  was transferred from the dyadic 
Green’s function onto the basis and test functions through 
integrations by parts. The constants resulting from the 
differentiation of RWG linear basis functions are added later in 
the recombination of the two potential contributions:  
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In this equation, 𝑙𝑙𝛼𝛼𝑖𝑖  and 𝑙𝑙𝛽𝛽
𝑗𝑗  stand for the length of the edges 

directly opposite to the free vertices i
αr  and j

βr , 𝐴𝐴𝛼𝛼 and 𝐴𝐴𝛽𝛽 are 
the areas of 𝑇𝑇𝛼𝛼 and 𝑇𝑇𝛽𝛽, while 𝜀𝜀 and 𝜇𝜇 refer to the considered me-
dium permittivity and permeability, respectively. Finally, the 
MoM matrix is obtained by adding the proper contributions for 
each basis function pair. 

We will now focus on the different methods implemented to 
compute the integrals (7)-(8). Depending on the distance be-
tween the coupled elements, spatial, spectral or asymptotic rep-
resentations were adopted. First, let us consider the coupling re-
sulting from half-space radiation. The singular integrals appear-
ing in self or adjacent couplings are treated as in [6]. In particu-
lar, the divergence theorem is applied twice in order to transform 
the two surface integrals on the triangles to a numerical integra-
tion on their edges of an analytical integrand. These transfor-
mations also cancel the singularity in 1/R. For non-singular cou-
plings, a straightforward triangular Gauss-Legendre integration 
is applied with the Green’s function spatial representation given 
by 
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(a factor 2 is added to take into account the presence of the infi-
nite plane on which the source is lying.) 

Secondly, we will give more insight into the coupling related 
to the field excited in the PPW regions. By applying the equiva-
lence theorem iteratively, a magnetic current source between 
two metallic planes can be replaced by an infinite periodic array 
of sources having doubled amplitude separated by twice the 
waveguide thickness h. All of these sources radiate in free space 
so that the total scalar Green’s function is given by: 

 ˆ( , ) ( , 2 )PPW HS
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One should pay attention to the 𝑛𝑛 = 0 term, which is singu-
lar for all triangles sharing one or more vertex, and it is here 
treated again as in [6]. This formulation is particularly suited for 

  
(a)                                                (b) 

Fig. 2. (a) ED basis function defined on an entire slot, (b) RWG basis 
function defined on a pair of mesh triangles defined inside a slot.  
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close coupling, as the lowest order terms dominate the sum. For 
couplings at greater distances, the following spectral expansion 
involving a few cylindrical waveguide modes is more suitable: 
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This last formulation is particularly efficient for thin wave-
guides, in which the higher-order modes are rapidly attenuated. 
Again, for representations (11) and (12) a Gauss-Legendre inte-
gration is adopted. Finally, an asymptotic approximation of the 
integrals was implemented for the couplings at large distances. 
The coupling is first expressed in the spectral domain, the vector 
between the coupled triangles centroids is ˆαβ αβ αβρ=ρ ρ , 𝜂𝜂 is 
the wave impedance, and the wavenumber is written as

ˆ ˆˆ( )x yh hαβ αβ= + ×h ρ z ρ : 
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and the Green’s function Fourier transform by 
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where 𝜀𝜀𝑚𝑚 is 1 for 𝑚𝑚 = 0 and 2 otherwise. 
Then, adapting the derivations from [7] to the RWG case and 

neglecting attenuated higher-order modes, the coupling reduces 
to the integral (16), evaluated by a Gauss-Hermite integration.
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III. NUMERICAL RESULTS AND VALIDATION  
In order to evaluate its accuracy, the code was used to 

compute the field radiated by two previously realized large 
antennas, a radial line slot antenna (RLSA) [8], and a dual 
reflector leaky-wave antenna (LWA) [9], depicted in Fig. 2. The 
first antenna is composed of radially arranged radiating slots fed 
by a single coaxial feed in its center. It was designed in [8] to 
radiate a specific distribution of z-oriented electrical field in the 
near field. The second antenna radiates a pencil beam in the far 
field. Two coaxial sources on the left side of the structure in Fig. 
2(b) generate an impinging wave on a Gregorian system feeding 
the arrays of slots. Both structures exhibit a large number of 
either metallic posts, slots, or both, making them interesting test 
structures for the developed numerical tool. 

A commercial FEM code (HFSS) and a time domain solver 
based on Finite Integration Technique (CST) were also used for 
comparison. However, we were unable to obtain a proper 

evaluation of the near field radiated by the RLSA with HFSS 
FEM method due to the required large airbox needed to evaluate 
the field, introducing resonances and a poor field evaluation. 
For all simulations, we used an Intel-Core i7-3770 CPU at 
3.40 GHz with 32 GB of RAM.  

A. Accuracy 
Starting with the RLSA antenna, the normalized z-

component evaluated at a distance of 150 mm of the antenna 
plane is illustrated in Fig. 3. All methods provide a good 
estimation of the pattern, especially for the three main lobes. 
The differences on the lateral lobes can be attributed to 
fabrication tolerances and edge diffraction effects. While the 
measured antenna is offinite size, our code assumes an infinite 
structure, while CST approximates an absorbing boundary to 
imitate free space propagation. 

Secondly, the different evaluations of the radiated 
normalized far field of the LWA, as well as the measurement 
results, are presented in Fig. 4. Due to the strong asymmetry of 

    
(a)                                        (b) 

Fig 3. Photograph of the simulated antennas, (a) RLSA, (b) LWA, 
respectively from [8] and[9].  

 
Fig 4. Normalized near-field z-component of the RLSA at a distance of 
150 mm, along with measurement data extracted from [8].  

 
Fig 5. Normalized LWA far field, with measurement data extracted from [9].  
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the pattern, it is here calculated in the two cut planes defined in 
spherical coordinates by 𝜑𝜑 =  0 degrees and 𝜑𝜑 =  90 degrees.  

In this particular case of relatively large slots, the ED basis 
functions do not produce the correct maximum directivity angle. 
On the contrary, one can see that the response with RWG 
functions is much closer to the measured data. It is also in 
agreement with the results provided by commercial software, in 
particular with the time domain solver CST.  

When comparing the accuracy of the solutions, one should 
keep in mind that the proper evaluation of the post diffraction 
in both HFSS and CST depend on the accuracy of the 3D mesh, 
the former being hexahedral, the latter cubic. While the chosen 
mesh is important also with RWG basis functions to describe 
currents on slots - in this case, 18 of them are sufficient to 
provide these results -, the post contribution is exact, as the full 
cylindrical shape is included analytically in the MM boundaries.  

B. Timing and memory comparisons 
The computation time of all simulations, as well as the 

memory consumptions, is summarized in Table I. Considering 
first of all the time required to solve each antenna problem, it is 
clear that the MM/MoM is much faster than the commercial 
codes in both cases. Starting with the RLSA, the ED provides 
in less than 6 minutes the pattern given by CST after more than 
9 hours of simulation. In this case, the RWG offer also a 
significant time gain but it requires more basis functions, 
indicating that resonant slots are indeed more easily represented 
on the sine basis. For the LWA, the RWG set provides the 
solution in less than 5 minutes, compared to 45 minutes in 
HFSS and 37 hours in CST. The ED computation is even faster 
but is unable to reach the physical solution.  

As far as memory is concerned, the ED formulation is always 
more advantageous because of its simplicity. In the RLSA case, 
ED only requires 2.2 GB of RAM for the RLSA, while the 
RWG formulation needs 20.1 GB and CST 10.7 GB. For the 
LWA case, HFSS (which is able to solve the problem in a 
reasonable time) requires 21.3 GB of memory, versus 10 GB 
and 3.5 GB needed by the RWG and ED basis functions, 
respectively. Overall, the MM/MoM still requires a decent 
amount of memory for large antennas but using the proper basis 
functions one can expect to about half the memory burden of 
current commercial codes. 

C. Discussion 
Beyond a straightforward comparison of the memory usage and 
time consumption, several points will be discussed here that are 
essentials for the optimization of large SIW antennas. 

First, while a simulation with a single set of geometrical 
parameters indicates how fast the method can be, it hides the 
fact that during an optimization procedure, only a few of them 
would be modified at each iteration. This is significant because 

in this solution only the relevant couplings would then be 
computed again. On the contrary, a 3D FEM approach as in 
HFSS or CST would require a complete re-meshing. 

Second, while the commercial software can only deal with 
one or two symmetry planes, this hybrid code takes into account 
further symmetries, by recycling all identical couplings. This 
significantly reduces the computation time for antennas with 
some type of periodicity, as in the cases presented here. 

Third, in many beam-forming networks SIW solutions, pins 
are used in large number to create reflectors following the 
quasi-optics principles. This leads to geometries such as the one 
presented in this paper, where the coupling between slots 
induced from the diffraction of the pins is most of the time 
negligible compared to the half-space and parallel-plate 
waveguide contributions. Knowing this, a significant time can 
be saved in the computation. 

IV. CONCLUSION 
We presented the hybridization of the basis functions in a 

MM/MoM code for SIW antennas. With the addition of RWG 
functions providing a better description of the currents, the 
numerical tool is now able to deal with electrically large slots, 
but also any kind of non-rectangular geometries. A significant 
time and resource reduction can be obtained in comparison with 
commercial solutions. The authors intend to demonstrate in 
future works the code potential for large antenna optimizations. 
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TABLE I 
TIME AND MEMORY CONSUMPTION 

 
 

Commercial tools This work 
(RWG) 

This work 
(ED)  HFSS CST 

RLSA 
Time -- 9 h 21 min 28 min 5 min 20 s 
RAM -- 10.7 GB 20.1 GB 2.2 GB 

LWA Time 45 min 37 h 4 min 45s 3 min 25 s 
RAM 21.3 GB 6.2 GB 10 GB 3.5 GB 
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