M. Fessenden, Illuminating life's building blocks, Nature, vol.533, pp.565-568, 2016.

E. F. Bailao, S. Lima-pde, M. G. Silva-bailao, A. M. Bailao, R. Fernandes-gda et al., Paracoccidioides spp. ferrous and ferric iron assimilation pathways, vol.6, p.821, 2015.

K. J. Waldron, J. C. Rutherford, D. Ford, and N. J. Robinson, Metalloproteins and metal sensing, Nature, vol.460, pp.823-830, 2009.

I. A. Koval, P. Gamez, C. Belle, K. Selmeczi, and J. Reedijk, Synthetic models of the active site of catechol oxidase: mechanistic studies, Chem. Soc. Rev, vol.35, pp.814-840, 2006.

R. Marion, N. M. Saleh, N. L. Poul, D. Floner, O. Lavastre et al., Rate enhancement of the catechol oxidase activity of a series of biomimetic monocopper(II) complexes by introduction of non-coordinating groups in N-tripodal ligands, New J. Chem, vol.36, pp.1828-1835, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00843848

M. I. Ayad, Synthesis, characterization and catechol oxidase biomimetic catalytic activity of cobalt(II) and copper(II) complexes containing N2O2 donor sets of imine ligands, Arab. J. Chem, vol.9, pp.1297-1306, 2016.

S. K. Dey and A. Mukherjee, The synthesis, characterization and catecholase activity of dinuclear cobalt(II/III) complexes of an O-donor rich Schiff base ligand, New J. Chem, vol.38, pp.4985-4995, 2014.

R. Saddik, F. Abrigach, N. Benchat, S. E. Kadiri, B. Hammouti et al., Catecholase activity investigation for pyridazinone-and thiopyridazinone-based ligands, Res. Chem. Intermed, vol.38, pp.1987-1998, 2012.

A. Mouadili, A. Attayibat, S. E. Kadiri, S. Radi, and R. Touzani, Catecholase activity investigations using in situ copper complexes with pyrazole and pyridine based ligands, Appl. Catal., A, vol.454, pp.93-99, 2013.

S. Sarkar, A. Sim, S. Kim, and H. Lee, Catecholase activity of a self-assembling dimeric Cu(II) complex with distant Cu(II) centers, J. Mol. Catal. A: Chem, vol.410, pp.149-159, 2015.

A. Allam, I. Dechamps-olivier, J. Behr, L. Dupont, and R. Plantier-royon, Thermodynamic, spectroscopic studies and catechol oxidase activity of copper (II) complexes with amphiphilic dgalacturonic acid derived ligands, Inorg. Chim. Acta, vol.366, pp.310-319, 2011.

S. K. Dey and A. Mukherjee, Catechol oxidase and phenoxazinone synthase: Biomimetic functional models and mechanistic studies, Coord. Chem. Rev, vol.310, pp.80-115, 2016.

S. Pal, B. Chowdhury, M. Patra, M. Maji, and B. Biswas, Ligand centered radical pathway in catechol oxidase activity with a trinuclear zinc-based model: synthesis, structural characterization and luminescence properties, Spectrochim. Acta. A. Mol. Biomol. Spectrosc, vol.144, pp.148-154, 2015.

A. El-trass and S. Y. Shaban, Silicon (IV) complexes containing bidentate ligands; Syntheses, Characterization and Catechol oxidase activity, Int J Adv Res, vol.2, pp.997-1006, 2014.

T. Plech, M. Wujec, A. Siwek, U. Kosikowska, and A. Malm, Synthesis and antimicrobial activity of thiosemicarbazides, s-triazoles and their Mannich bases bearing 3-chlorophenyl moiety, Eur. J. Med. Chem, vol.46, pp.241-248, 2011.

S. N. Pandeya, D. Sriram, G. Nath, and E. Declercq, Synthesis, antibacterial, antifungal and anti-HIV activities of Schiff and Mannich bases derived from isatin derivatives and N-[4-(49-chlorophenyl)thiazol-2-yl] thiosemicarbazide, Eur. J. Pharm. Sci, vol.9, pp.25-31, 1999.

E. Palaska, G. S¸ahin, P. Kelicen, N. T. Durlu, and G. L. Altinok, Synthesis and antiinflammatory activity of 1-acylthiosemicarbazides, Il Farmaco, vol.1, pp.101-107, 2002.

G. Kucukguzel, A. Kocatepe, E. De-clercq, F. Sahin, and M. Gulluce, Synthesis and biological activity of 4-thiazolidinones, thiosemicarbazides derived from diflunisal hydrazide, Eur. J. Med. Chem, vol.41, pp.353-359, 2006.

J. F. De-oliveira, A. L. Silva, D. B. Vendramini-costa, C. A. Da-cruz-amorim, J. F. Campos et al., Synthesis of thiophene-thiosemicarbazone derivatives and evaluation of their in vitro and in vivo antitumor activities, Eur. J. Med. Chem, vol.104, pp.148-156, 2015.

E. C. Moore, M. S. Zedeck, K. C. Agrawal, and A. C. Sartorelli, Inhibition of ribonucleoside diphosphate reductase by 1-formylisoquinoline thiosemicarbazone and related compounds, Biochemistry (Mosc), vol.9, pp.4492-4498, 1970.

R. Manikandan, P. Anitha, G. Prakash, P. Vijayan, P. Viswanathamurthi et al., Ruthenium(II) carbonyl complexes containing pyridoxal thiosemicarbazone and transbis(triphenylphosphine/arsine): Synthesis, structure and their recyclable catalysis of nitriles to amides and synthesis of imidazolines, J. Mol. Catal. A: Chem, vol.398, pp.312-324, 2015.

M. M. Subarkhan and R. Ramesh, Binuclear ruthenium(III) bis(thiosemicarbazone) complexes: synthesis, spectral, electrochemical studies and catalytic oxidation of alcohol, Spectrochim. Acta. A. Mol. Biomol. Spectrosc, vol.138, pp.264-270, 2015.

D. J. Hayne, S. Lim, and P. S. Donnelly, Metal complexes designed to bind to amyloid-b for the diagnosis and treatment of Alzheimer's disease, Chem. Soc. Rev, vol.43, pp.6701-6715, 2014.

S. Lim, B. M. Paterson, M. T. Fodero-tavoletti, G. J. O'keefe, R. Cappai et al., A copper radiopharmaceutical for diagnostic imaging of Alzheimer's disease: a bis(thiosemicarbazonato)copper(II) complex that binds to amyloid-beta plaques, Chem Commun, vol.46, pp.5437-5446, 2010.

J. M. Cano-pavon, J. C. Sanchez, and F. Pino, The 4-phenyl-3-thiosemicarbazone of biacetylmonoxime as an analytical reagent. spectrophotometric determination of manganese, Anal. Chim. Acta, vol.75, pp.335-342, 1975.

R. B. Singh, B. S. Garg, and R. P. Singh, Analytical applications of thiosemicarbazones and semicarbazones: A review, Talanta, vol.25, pp.619-632, 1978.

A. S. Fouda, M. N. Moussa, F. I. Taha, and A. I. Eleneanaa, The role of some thiosemicarbazide derivatives in the corrosion inhibition of aluminium in hydrochloric acid, Corros. Sci, vol.26, pp.719-726, 1986.

B. Houari, S. Louhibi, K. Tizaoui, L. Boukli-hacene, B. Benguella et al., New synthetic material removing heavy metals from aqueous solutions and wastewater, Arab. J. Chem, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02443571

A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo et al., SIR97: a new tool for crystal structure determination and refinement, J. Appl. Crystallogr, vol.92, pp.115-119, 1999.

G. M. Sheldrick, A short history of SHELX, Acta Crystallographica Section A, vol.64, pp.112-122, 2008.

W. Lee, Y. Kim, J. Lim, M. Kim, E. J. Lee et al., Rapid, sensitive diagnosis of hemolytic anemia using antihemoglobin antibody in hypotonic solution, Ann. Clin. Lab. Sci, vol.32, pp.37-43, 2002.

K. Alomar, A. Landreau, M. Kempf, M. A. Khan, M. Allain et al., Synthesis, crystal structure, characterization of zinc(II), cadmium(II) complexes with 3-thiophene aldehyde thiosemicarbazone (3TTSCH), J. Inorg. Biochem, vol.104, pp.397-404, 2010.

I. Pal, F. Basuli, and S. Bhattacharya, Thiosemicarbazone complexes of the platinum metals. A story of variable coordination modes, J. Chem. Sci, vol.114, pp.255-268, 2002.

C. F. Bell, K. A. Lott, and N. Hearn, Copper complexes of pyridine 2-aldehyde and 2-acetylpyridine thiosemicarbazones, Polyhedron, vol.6, pp.39-44, 1987.

X. Y. Jiang, L. Q. Sheng, C. F. Song, N. Na-du, H. J. Xu et al., Mechanism, kinetics, and antimicrobial activities of 2-hydroxy-1-naphthaldehyde semicarbazone as a new jack bean urease inhibitor, New J. Chem, vol.40, pp.3520-3527, 2016.

H. Beraldo, R. Lima, L. R. Teixeira, A. A. Moura, and D. X. West, Crystal structures and IR, NMR and UV spectra of 4-formyl-and 4-acetylpyridine N(4)-methyl-and N(4)-ethylthiosemicarbazones, J. Mol. Struct, vol.559, pp.99-106, 2001.

I. C. Mendes, L. R. Teixeira, R. Lima, H. Beraldo, N. L. Speziali et al., Structural and spectral studies of thiosemicarbazones derived from 3-and 4-formylpyridine and 3-and 4-acetylpyridine, J. Mol. Struct, vol.559, pp.355-360, 2001.

D. Wu, C. He, C. Duan, and X. You, Terephthalaldehyde bis(thiosemicarbazone) bis(dimethylformamide) solvate, Acta Crystallographica Section C, vol.56, pp.1336-1337, 2000.

B. Houari, S. Louhibi, L. Boukli-hacene, T. Roisnel, and M. Taleb, E)-2-[(1H-Imidazol-4-yl)methyl-idene]hydrazinecarbo-thio-amide monohydrate, Acta Cryst. E, vol.69, p.1469, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01069712

A. Çukurovali, I. Yilmaz, H. Özmen, and M. Ahmedzade, Cobalt(II), copper(II) nickel(II)and zinc(II) complexes of two novel Schiff base ligands and their antimicrobial activity, Transit. Met. Chem, vol.27, pp.171-176, 2002.

D. A. Paixão, L. P. De-oliveira, P. I. Maia, V. M. Deflon, Z. A. Carneiro et al., Crystal structure of two new polymeric copper(II) complexes active against Trypanosoma cruzi, vol.22, pp.809-815, 2018.

B. Chiari, A. Cinti, O. Crispu, F. Demartin, A. Pasini et al., New pentanuclear mixed valence Co(II)-Co(III) complexes of "short" salen homologues, J. Chem. Soc., Dalton Trans, vol.24, pp.4672-4677, 2002.

N. Kitajima, K. Fujisawa, Y. Morooka, K. Toriumi, and . Mu, O2, J. Am. Chem. Soc, vol.111, issue.2, pp.8975-8976, 1989.

W. M. Singh, T. Baine, S. Kudo, S. Tian, X. A. Ma et al.,

D. L. Bollinger, B. Baker, C. E. Yan, X. Webster, and . Zhao, Electrocatalytic and photocatalytic hydrogen production in aqueous solution by a molecular cobalt complex, Angew. Chem. Int. Ed. Engl, vol.51, pp.5941-5945, 2012.

O. Schlager, K. Wieghardt, B. Nuber-;-m-=-fe, and . Co, Crystal structure of, Inorg. Chem, vol.4, pp.6456-6462, 1995.

N. Boussalah, R. Touzani, I. Bouabdallah, S. E. Kadiri, and S. Ghalem, Synthesis, structure and catalytic properties of tripodal amino-acid derivatized pyrazole-based ligands, J. Mol. Catal. A: Chem, vol.306, pp.113-117, 2009.

R. Boyaala, R. E. Ati, M. Khoutoul, M. E. Kodadi, R. Touzani et al., Biomimetic oxidation of catechol employing complexes formed in situ with heterocyclic ligands and different copper(II) salts, IRAN CHEM SOC, vol.15, pp.1-8, 2017.

A. Mouadili, F. F. Al-blewi, N. Rezki, M. Messali, A. E. Ouafi et al., Biomimetic catecholase studies: using in-situ prepared complexes by 1,2,4-triazole schiff bases and different metal salts, J. Mater. Environ. Sci, vol.6, pp.2392-2399, 2015.

, Ousama Nehar: realization of all the experimental part (except hemolysis), tracet graphs, interpretation, validation of results

, Radia Mahboub: interpretation of part of the results and correction of the writing

S. Louhibi, Interpreting the results, writing and correcting the writing of part of the article

T. Roisnel, Single crystal study

M. Aissaoui, Writing and realization of the experimental hemolysis partwriting and correction of a part of the article