L. E. Bell and . Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems, Science, p.14571461, 2008.

I. Petsagkourakis, K. Tybrandt, X. Crispin, I. Ohkubo, N. Satoh et al., Thermoelectric materials and applications for energy harvesting power generation, Sci. Technol. Adv. Mater, vol.19, p.836862, 2018.

Y. Pei, H. Wang, and G. J. Snyder, Band Engineering of Thermoelectric Materials, Adv. Mater, vol.24, p.61256135, 2012.

L. Yang, Z. Chen, M. S. Dargusch, and J. Zou, High Performance Thermoelectric Materials: Progress and Their Applications, Adv. Energy Mater, vol.8, p.1701797, 2018.

Y. Pei, G. Tan, D. Feng, L. Zheng, Q. Tan et al., Integrating Band Structure Engineering with All-Scale Hierarchical Structuring for High Thermoelectric Performance in PbTe System, Adv. Energy Mater, vol.7, p.1601450, 2017.

T. Mori, Novel principles and nanostructuring methods for enhanced thermoelectrics, vol.13, p.1702013, 2017.

Z. Luo, X. Zhang, X. Hua, G. Tan, T. P. Bailey et al., High Thermoelectric Performance in Supersaturated Solid Solutions and Nanostructured n-Type PbTe-GeTe, Adv. Funct. Mater, vol.28, p.1801617, 2018.

G. Rogl, J. Bursik, A. Grytsiv, S. Puchegger, V. Soprunyuk et al., Nanostructuring as a tool to adjust thermal expansion in high ZT skutterudites, Acta Mater, p.359368, 2018.

L. Hu, Y. Zhang, H. Wu, Y. Liu, J. Li et al., Synergistic Compositional-Mechanical-Thermal Eects Leading to a Record High ZT in n-Type V 2 VI 3 Alloys Through Progressive Hot Deformation, Adv. Funct. Mater, vol.28, p.1803617, 2018.

J. Dolyniuk, B. Owens-baird, J. Wang, J. V. Zaikina, and K. Kovnir, Clathrates Thermoelectrics. Mater. Sci. Eng. R, vol.108, p.146, 2016.

Y. Pei, X. Shi, A. Lalonde, H. Wang, L. Chen et al., Convergence of electronic bands for high performance bulk thermoelectrics, Nature, p.6669, 2011.

N. Shutoh and S. Sakurada, Thermoelectric properties of the Ti x (Zr 0.5 Hf 0.5 ) 1?x NiSn half-Heusler compounds, J. Alloys Compd, vol.389, 2005.

S. Leblanc, S. K. Yee, M. L. Scullin, C. Dames, and K. E. Goodson, Materials and manufacturing cost considerations for thermoelectrics, Renew. Sust. Energ. Rev, vol.84, p.313327, 2014.

S. Kim, M. Cho, Y. Mishima, and D. Choi, High temperature thermoelectric properties of p-and n-type ?-FeSi 2 with some dopants, Intermetallics, vol.11, p.399405, 2003.

Z. He, D. Platzek, C. Stiewe, H. Chen, G. Karpinski et al., Thermoelectric properties of hot-pressed Al-and Co-doped iron disilicide materials, J. Alloys Compd, p.303309, 2007.

C. Gayner, D. Prakash, and A. Ballal, Inuence of secondary phases dispersants and porosity on thermoelectric properties of ?-Fe 0.91 Mn 0.09 Si 2, J. Alloys Compd, vol.164, p.169, 2017.

T. Massalski, Binary Alloy Phase Diagrams. Binary Alloy Phase Diagrams, 1990.

X. Qu, S. Lü, J. Hu, and Q. Meng, Microstructure and thermoelectric properties of ?-FeSi 2 ceramics fabricated by hot-pressing and spark plasma sintering, J. Alloys Compd, 2011.

M. Mohebali, Y. Liu, L. Tayebi, J. S. Krasinski, and D. Vashaee, Thermoelectric gure of merit of bulk FeSi 2 -Si 0.8 Ge 0.2 nanocomposite and a comparison with ?-FeSi 2, Renew. Energ, vol.74, p.940947, 2015.

V. Poddar, N. Dhokey, R. Garbade, S. Butee, D. Prakash et al., Rapid production of Iron Disilicide thermoelectric material by Hot Press Sintering Route, Mat. Sci. Semicon. Proc, p.477481, 2017.

L. Han, T. Xin-feng, C. Wei-qiang, and Z. Qing-jie, Quick preparation and thermal transport properties of nanostructured ?-FeSi 2 bulk material, Chinese Phys. B, p.287923, 2009.

U. Ail, S. Gorsse, S. Perumal, M. Prakasam, A. Umarji et al., Thermal conductivity of ?-FeSi 2 /Si endogenous composites formed by the eutectoid decomposition of ?-Fe 2 Si 5, J. Mater. Sci, vol.50, p.67136718, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01180877

N. Liu, W. A. Jensen, M. Zebarjadi, and J. A. Floro, Tunable ?-FeSi 2 -Si 1?y Ge y nanocomposites by a novel React/Transform Spark Plasma Sintering approach for thermoelectric applications, Mater. Today Phys, 1927.

W. A. Jensen, N. Liu, E. Rosker, B. F. Donovan, B. Foley et al., Eutectoid transformations in Fe-Si Alloys for thermoelectric applications

, J. Alloys Compd, vol.721, p.705711, 2017.

N. Liu, E. Rezaei, W. A. Jensen, S. Song, Z. Ren et al., Improved thermoelectric performance of eco-friendly ?-FeSi 2 -SiGe nanocomposite via synergistic hierarchical structuring, phase percolation, and selective doping, Adv. Funct. Mater, vol.29, 2019.

F. L. Redzuan, I. Mikio, and T. Masatoshi, Synthesis of Co-doped ?-FeSi 2 /Si composites through eutectoid decomposition and its thermoelectric properties, J. Mater. Sci, vol.10, p.76837690, 2018.

P. Rajasekar and A. M. Umarji, Eect of Al-doping on suppression of thermal conductivity in Si dispersed ?-FeSi 2, Intermetallics, vol.89, p.5764, 2017.

R. Parasuraman, Y. Wu, J. Ordonez-miranda, S. Volz, and A. M. Umarji, Particle size eect on the thermal conductivity reduction of silicon based thermoelectric composites, Sustain. Energ. Fuels, 2018.

F. L. Redzuan, M. Ito, and M. Takeda, Phosphorus doping in n-type ?-FeSi 2 /Si composites and its eects on thermoelectric properties, Intermetallics, vol.19, p.24, 2019.

H. Wu, B. Hu, N. Tian, and Q. Zheng, Preparation of ?-FeSi 2 thermoelectric material by laser sintering, Mater. Lett, p.28772879, 2011.

Y. Kinemuchi, M. Mikami, I. Terasaki, and W. Shin, Rapid synthesis of thermoelectric compounds by laser melting, Mater. Des, vol.106, p.3036, 2016.

R. Bywalez, H. Orthner, E. Mehmedovic, R. Imlau, A. Kovacs et al., Wiggers, H. Direct gas-phase synthesis of single-phase ?-FeSi 2 nanoparticles, J. Nanopart. Res, p.15, 1878.

S. Sen, N. Gogurla, P. Banerji, P. K. Guha, and P. Pramanik, Synthesis and characterization of ?-phase iron silicide nano-particles by chemical reduction, Mater. Sci. Eng. B, p.2839, 0200.

S. Sen, P. K. Guha, P. Banerji, and P. Pramanik, Mn and As doping of ?-FeSi 2 via a chemical method, RSC Adv, vol.6, p.68238, 2016.

S. Le-tonquesse, E. Alleno, V. Demange, V. Dorcet, L. Joanny et al., Innovative One-step Synthesis of Mesostructured CoSb 3 -based Skutterudites by Magnesioreduction, J. Alloys Compd, p.176184, 2019.

S. Le-tonquesse, V. Dorcet, L. Joanny, V. Demange, C. Prestipino et al., Mesostructure -thermoelectric properties relationships in V x MnSi 1.74 (x = 0, 0.04) Higher Manganese Silicides prepared by magnesiothermy

, J. Alloys Compd, 2020.

F. J. Pérez-alonso, M. L. Granados, M. Ojeda, P. Terreros, S. Rojas et al., Chemical structures of coprecipitated Fe-Ce mixed oxides, Chem. Mater, vol.17, p.23292339, 2005.

M. Casas-cabanas, M. Reynaud, J. Rikarte, P. Horbachb, and J. Rodriguez-carvajal, FAULTS: a program for renement of structures with extended defects, J. Appl. Crystallogr, p.22592269, 2016.

M. M. Treacy, J. M. Newsam, and M. W. Deem, A general recursion method for calculating diracted intensities from crystals containing olanar faults, Proc. R. Soc. London Ser. A, p.499520, 1991.

J. Rodriguez-carvajal, Recent advances in magnetic-structure determination by neutron powder diraction, Physica B, p.5569, 1993.

P. Dusausoy, J. Protas, R. Wandji, and B. Roques, Crystal structure of iron disilicide, FeSi 2 ?, Acta Crystallogr. B, p.12091218, 1971.

O. Knacke, O. Kubaschewski, and K. Hesselmann, Thermo-chemical Properties of Inorganic Substances, 1991.

X. Wang, S. Wang, W. Hu, J. Cai, L. Zhang et al., Synthesis and photocatalytic activity of SiO2/g-C3N4composite photocatalyst, Mater. Lett, p.5356, 2014.

I. Dézsi, C. Fetzer, L. Bujdosó, J. Brötz, and A. Balogh, Mechanical alloying of Fe-Si and milling of ?-and ?-FeSi 2 bulk phases, J. Alloys Compd, p.5154, 2010.

H. Nagai, Eect of mechanical alloying and grinding on the preparation and thermoelectric properties of ?-FeSi 2, Mater. Trans, vol.36, p.365372, 1995.

H. Toraya, Estimation of statistical uncertainties in quantitative phase analysis using the Rietveld method and the whole-powder-pattern decomposition method, J. Appl. Crystallogr, vol.33, p.13241328, 2000.

W. H. Haynes, D. R. Lide, and T. J. Bruno, CRC Handbook of Chemistry and Physics, vol.96, 2015.

C. Won, H. Nersisyan, and H. Won, Titanium powder prepared by a rapid exothermic reaction, Chem. Eng. J, p.270275, 2010.

H. Nersisyan, H. Won, C. Won, A. Joc, and J. Kim, Direct magnesiothermic reduction of titanium dioxide to titanium powder through combustion synthesis, Chem Eng J, vol.235, p.6774, 2014.

Z. Xing, J. Lu, and X. Ji, A Brief Review of Metallothermic Reduction Reactions for Materials Preparation, Small Methods, vol.2, p.1800062, 2018.

S. Haouli, S. Boudebane, I. J. Slipper, S. Lemboub, P. Gebara et al., Combustion synthesis of silicon by magnesiothermic reduction, Phosphorus Sulfur Silicon Relat. Elem, 2018.

B. A. Wechsler and A. Navrotsky, Thermodynamics and structural chemistry of compounds in the system MgO-TiO 2, J. Solid State Chem, p.165180, 1984.

Y. Zheng, A. Taccoen, and J. F. Petro, Planar defects in ?-iron disilicide (?-FeSi 2 ) analyzed by transmission electron-microscopy and modeling, J. Appl. Crystallogr, vol.25, p.122128, 1992.

H. Yamane and T. Yamada, Eect of stacking fault on the diraction intensities of ?-FeSi 2, J. Alloys Compd, p.282287, 2009.

J. Hesse and R. Bucksch, Solid Solubility of CoSi 2 in ?-FeSi 2, J. Mater. Sci, 1970.

E. Arushanov and K. G. Lisunov, Transport properties of ?-FeSi 2, Jpn. J. Appl. Phys, vol.54, pp.7-9, 2015.

E. Arushanov, H. Lange, and J. Werner, Hole Mobility in p-Type ?-FeSi 2 Single Crystals, Phys. Stat. Sol, vol.166, p.853859, 1998.

J. Tani and H. Kido, Thermoelectric Properties of ?-Fe 1?x Co x Si 2 Semiconductors, Jpn. J. Appl. Phys, p.32363239, 2001.

J. Tani and H. Kido, First-principle study of native point defects in ?-FeSi 2, J. Alloys Compd, vol.352, p.153157, 2003.

S. Chu, T. Hirohada, and H. Kan, Room Temperature 1.58 µm Photoluminescence and Electric Properties of Highly Oriented ?-FeSi 2 Films Prepared by Magnetron-Sputtering Deposition, Jpn. J. Appl. Phys, pp.299-301, 2002.

R. M. Ware and D. J. Mcneill, Iron disilicide as a thermoelectric generator material, Proc. IEE, vol.111, p.178182, 1964.

S. Brehme, G. Behr, and A. Heinrich, Electrical properties of Co-doped ?-FeSi 2 crystals, J. Appl. Phys, p.37983803, 2001.

J. Tani and H. Kido, Electrical properties of Co-doped and Ni-doped ?-FeSi 2, J. Appl. Phys, vol.84, p.14081411, 1998.

R. Lefévre, D. Berthebaud, O. Lebedev, O. Pérez, C. Castro et al., Layered tellurides: stacking faults induce low thermal conductivity in the new In 2 Ge 2 Te 6 and thermoelectric properties of related compounds, J. Mater. Chem. A, vol.5, 2017.

A. Nozariasbmarz, A. Agarwal, Z. A. Coutant, M. J. Hall, J. Liu et al., Thermoelectric silicides: A review, Jpn. J. Appl. Phys, pp.5-9, 2017.