T. S. Sherkar and L. J. Koster, Dielectric Effects at Organic/Inorganic Interfaces in Nanostructured Devices, ACS Appl. Mater. Interfaces, vol.7, pp.11881-11889, 2015.

P. Schulz, D. Cahen, and A. Kahn, Halide Perovskites: Is It All about the Interfaces?, Chem. Rev, vol.119, pp.3349-3417, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02414762

C. Chueh, C. Li, A. K. Jen, and .. , Recent Progress and Perspective in Solution-Processed Interfacial Materials for Efficient and Stable Polymer and Organometal Perovskite Solar Cells, Energy Environ. Sci, vol.8, pp.1160-1189, 2015.

H. Yip, A. K. Jen, and .. , Recent Advances in Solution-Processed Interfacial Materials For Efficient And Stable Polymer Solar Cells, Energy Environ. Sci, vol.5, pp.5994-6011, 2012.

K. X. Steirer, J. P. Chesin, N. E. Widjonarko, J. J. Berry, A. Miedaner et al., Solution Deposited NiO Thin-Films As Hole Transport Layers in Organic Photovoltaics, Org. Elec, vol.11, pp.1414-1418, 2010.

J. He, H. Lindström, A. Hagfeldt, and S. Lindquist, Dye-Sensitized Nanostructured Tandem Cell-First Demonstrated Cell With a Dye-Sensitized Photocathode, Sol. Energy Mater Sol. Cells, vol.62, pp.265-273, 2000.

M. D. Irwin, D. B. Buchholz, A. W. Hains, R. P. Chang, and T. J. Marks, p-Type Semiconducting Nickel Oxide As An Efficiency-Enhancing Anode Interfacial Layer In Polymer Bulk-Heterojunction Solar Cells, Proc. Natl. Acad. Sci. U.S.A, vol.105, pp.2783-2787, 2008.

H. Sato, T. Minami, S. Takata, and T. Yamada, Transparent Conducting p-Type NiO Thin Films Prepared By Magnetron Sputtering, Thin Solid Films, vol.236, pp.27-31, 1993.

H. Kato, K. Asakura, and A. Kudo, Highly Efficient Water Splitting into H 2 and O 2 over Lanthanum-Doped NaTaO 3 Photocatalysts with High Crystallinity and Surface Nanostructure, J. Am. Chem. Soc, vol.125, pp.3082-3089, 2003.

B. Varghese, M. V. Reddy, Z. Yanwu, C. S. Lit, T. C. Hoong et al., Fabrication of NiO Nanowall Electrodes for High Performance Lithium Ion Battery, Chem. Mater, vol.20, pp.3360-3367, 2008.

J. You, L. Meng, T. Song, T. Guo, Y. M. Yang et al., Improved Air Stability of Perovskite Solar Cells Via Solution-Processed Metal Oxide Transport Layers, Nature Nanotech, vol.11, pp.75-81, 2016.

W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang et al., Efficient and Stable Large-Area Perovskite Solar Cells with Inorganic Charge Extraction Layers, Science, vol.350, pp.944-948, 2015.

S. Seo, I. J. Park, M. Kim, S. Lee, C. Bae et al., An Ultra-Thin, Un-Doped NiO Hole Transporting Layer of Highly Efficient (16.4%) Organic-Inorganic Hybrid Perovskite Solar Cells, Nanoscale, vol.8, pp.11403-11412, 2016.

K. A. Bush, 6%-Efficient Monolithic Perovskite/Silicon Tandem Solar Cells with Improved Stability, Nature Energy, vol.23, p.17009, 2017.

H. Tsai, R. Asadpour, J. Blancon, C. C. Stoumpos, O. Durand et al., Light-Induced Lattice Expansion leads to High-Efficiency Perovskite Solar Cells, Science, vol.360, pp.67-70, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01760080

W. Chen, Y. Wu, J. Liu, C. Qin, X. Yang et al., Hybrid Interfacial Layer Leads To Solid Performance Improvement of Inverted Perovskite Solar Cells, Energy Environ. Sci, vol.8, pp.629-640, 2015.

W. Nie, H. Tsai, J. Blancon, F. Liu, C. C. Stoumpos et al., Critical Role of Interface and Crystallinity on the Performance and Photostability of Perovskite Solar Cell on Nickel Oxide, Adv. Mater, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01660884

E. Mosconi, E. Ronca, and F. De-angelis, First-Principles Investigation of the TiO 2 /Organohalide Perovskites Interface: The Role of Interfacial Chlorine, J. Phys. Chem. Lett, vol.5, pp.2619-2625, 2014.

L. Li, J. Mi, Y. Yong, B. Mao, and W. Shi, First-Principles Study On the Lattice Plane And Termination Dependence of the Electronic Properties of the NiO/CH 3 NH 3 PbI 3 Interfaces, J. Mater. Chem, vol.6, pp.8226-8233, 2018.

P. Du-plessis, S. J. De-v.;-van-tonder, and L. Alberts, Elastic Constants of a NiO Single Crystal: I. J. Phys. C: Solid State Phys, 1971.

J. Li, G. Rignanese, and S. G. Louie, Quasiparticle Energy Bands of NiO in the GW Approximation, Phys. Rev. B, p.71, 2005.

H. Jiang, R. I. Gomez-abal, P. Rinke, and M. Scheffler, First-Principles Modeling of Localized d States with the GW/LDA+U Approach, Phys. Rev. B, p.45108, 2010.

S. K. Panda, High Photon Energy Spectroscopy of NiO: Experiment and Theory, Phys. Rev. B, p.235138, 2016.

A. Rohrbach, J. Hafner, and G. Kresse, Molecular Adsorption on the Surface of Strongly Correlated Transition-Metal Oxides: A Case Study For CO/NiO(100), Phys. Rev. B, p.75413, 2004.

V. I. Anisimov, F. Aryasetiawan, and A. I. Lichtenstein, First-Principles Calculations of the Electronic Structure And Spectra of Strongly Correlated Systems: the LDA+U Method, J. Phys.: Condens. Matter, vol.9, pp.767-808, 1997.

S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Electron-Energy-Loss Spectra And the Structural Stability of Nickel Oxide: An LSDA+U Study, Phys. Rev. B, vol.57, pp.1505-1509, 1998.

M. Soler, E. Artacho, J. D. Gale, A. Garc, J. Junquera et al., The SIESTA Method for Ab Initio Order-N Materials, J. Phys.: Condens. Matter, vol.14, pp.2745-2779, 2002.

E. Artacho, E. Anglada, O. Diéguez, J. D. Gale, A. García et al., The SIESTA Method; Developments and Applicability, J. Phys.: Condens. Matter, vol.20, p.64208, 2008.

M. Cococcioni and S. De-gironcoli, Linear Response Approach to the Calculation of the Effective Interaction Parameters in the LDA + U Method, Phys. Rev. B, p.35105, 2005.

D. Ködderitzsch, W. Hergert, W. M. Temmerman, Z. Szotek, A. Ernst et al., Exchange Interactions in NiO and at the NiO(100) Surface, Phys. Rev. B, p.64434, 2002.

M. R. Welton-cook and M. Prutton, LEED Calculations for the NiO (100) Surface: Extension to Lower Energies, J. Phys. C: Solid State Phys, vol.13, pp.3993-3400, 1980.

M. Saliba, T. Matsui, K. Domanski, J. Seo, A. Ummadisingu et al., Incorporation of Rubidium Cations Into Perovskite Solar Cells Improves Photovoltaic Performance, Science, vol.354, pp.206-209, 2016.

W. S. Yang, B. Park, E. H. Jung, N. J. Jeon, Y. C. Kim et al., Iodide Management in Formamidinium-Lead-Halide-Based Perovskite Layers for Efficient Solar Cells, vol.356, pp.1376-1379, 2017.

J. Even, M. Carignano, and C. Katan, Molecular Disorder and Translation/Rotation Coupling in the Plastic Crystal Phase of Hybrid Perovskites, Nanoscale, vol.8, pp.6222-6236, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01242390

L. She, M. Liu, and D. Zhong, Atomic Structures of CH 3 NH 3 PbI 3 (001) Surfaces, ACS Nano, vol.10, pp.1126-1131, 2016.

C. Quarti, E. Mosconi, and F. De-angelis, Interplay of Orientational Order and Electronic Structure in Methylammonium Lead Iodide: Implications for Solar Cell Operation, Chem. Mater, vol.26, pp.6557-6569, 2014.

R. W. Wyckoff, Cadmium Chloride Structure, pp.239-444, 1963.

J. Even, L. Pedesseau, and M. Kepenekian, Electronic Surface States and Dielectric Self-Energy Profiles in Colloidal Nanoscale Platelets of CdSe, Phys. Chem. Chem. Phys, vol.16, pp.25182-25190, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01076761

D. Sapori, M. Kepenekian, L. Pedesseau, C. Katan, and J. Even, Quantum Confinement and Dielectric Profiles of Colloidal Nanoplatelets of Halide Inorganic and Hybrid Organic-Inorganic Perovskites, Nanoscale, vol.8, pp.6369-6378, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01242389

P. J. Gielisse, J. N. Plendl, L. C. Mansur, R. Marshall, S. S. Mitra et al., Infrared Properties of NiO and CoO and Their Mixed Crystals, J. Appl. Phys, vol.36, pp.2446-2450, 1965.

M. Hirasawa, T. Ishihara, T. Goto, K. Uchida, and N. Miura, Magnetoabsorption of the Lowest Exciton in Perovskite-Type Compound (CH 3 NH 3 )PbI 3 . Physica B Condens. Matter, vol.201, pp.427-430, 1994.

J. Even, L. Pedesseau, and C. Katan, Analysis of Multivalley and Multibandgap Absorption and Enhancement of Free Carriers Related to Exciton Screening in Hybrid Perovskites, J. Phys. Chem. C, vol.118, pp.11566-11572, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01004794

Z. Yang, A. Surrente, K. Galkowski, N. Bruyant, D. K. Maude et al., Unraveling the Exciton Binding Energy and the Dielectric Constant in Single-Crystal Methylammonium Lead Triiodide Perovskite, J. Phys. Chem. Lett, vol.8, pp.1851-1855, 2017.

J. Junquera, M. Zimmer, P. Ordejón, and P. Ghosez, First-principles Calculation of The Band Offset at BaO/BaTiO 3 and SrO/SrTiO 3 Interfaces, Phys. Rev. B, p.155327, 2003.

B. Traore, L. Pedesseau, L. Assam, X. Che, J. Blancon et al., Composite Nature of Layered Hybrid Perovskites: Assessment on Quantum and Dielectric Confinements and Band Alignment, ACS, vol.12, pp.3321-3332, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01719873

M. Peressi, N. Binggeli, and A. Baldereschi, Band Engineering at Interfaces: Theory And Numerical Experiments, J. Phys. D: Appl. Phys, vol.31, pp.1273-1299, 1998.

T. Liu, K. Chen, Q. Hu, R. Zhu, and Q. Gong, Inverted Perovskite Solar Cells: Progresses and Perspectives, Adv. Energy Mater, vol.6, p.1600457, 2016.

G. Niu, S. Wang, J. Li, W. Li, and L. Wang, Oxygen Doping in Nickel Oxide For Highly Efficient Planar Perovskite Solar Cells, J. Mater. Chem. A, vol.6, pp.4721-4728, 2018.

J. Heyd, G. E. Scuseria, and M. Ernzerhof, Hybrid Functionals Based on a Screened Coulomb Potential, J. Chem. Phys, vol.118, pp.8207-8215, 2003.

J. Heyd, G. E. Scuseria, M. Ernzerhof, and . Erratum, Hybrid Functionals Based on a Screened Coulomb Potential, J. Chem. Phys, vol.118, p.8207, 2003.

, J. Chem. Phys, vol.124, p.219906, 2006.

J. Haruyama, K. Sodeyama, L. Han, and Y. Tateyama, Termination Dependence of Tetragonal CH 3 NH 3 PbI 3 Surfaces for Perovskite Solar Cells, J. Phys. Chem. Lett, vol.5, pp.2903-2909, 2014.

G. Volonakis and F. Giustino, Interfaces Between Graphene-Related Materials and MAPbI 3 : Insights from First-Principles, Adv. Mater, vol.5, p.1800496, 2018.

K. X. Steirer, P. Schulz, G. Teeter, V. Stevanovic, M. Yang et al., Defect Tolerance in Methylammonium Lead Triiodide Perovskite, ACS Energy Lett, vol.1, pp.360-366, 2016.

D. Meggiolaro and F. De-angelis, First-Principles Modeling of Defects in Lead Halide Perovskites: Best Practices and Open Issues, ACS Energy Lett, vol.3, pp.2206-2222, 2018.

M. Yavari, How Far Does the Defect Tolerance of Lead-Halide Perovskites Range? The Example of Bi Impurities Introducing Efficient Recombination Centers, J. Mater. Chem. A, vol.7, pp.23838-23853, 2019.

D. Meggiolaro, S. G. Motti, E. Mosconi, A. J. Barker, J. Ball et al., De Angelis, F. Iodine Chemistry Determines the Defect Tolerance of Lead-Halide Perovskites, Energy Environ. Sci, vol.11, pp.702-713, 2018.

J. Kim, S. Lee, J. H. Lee, and K. Hong, The Role of Intrinsic Defects in Methylammonium Lead Iodide Perovskite, J. Phys. Chem. Lett, vol.5, pp.1312-1317, 2014.

Y. Kye, C. Yu, U. Jong, Y. Chen, and A. Walsh, Critical Role of Water in Defect Aggregation and Chemical Degradation of Perovskite Solar Cells, J. Phys. Chem. Lett, vol.9, pp.2196-2201, 2018.

W. B. Zhang, N. Yu, W. Y. Yu, and B. Y. Tang, Stability and Magnetism of Vacancy in NiO: A GGA+U Study, Eur. Phys. J. B, vol.64, pp.153-158, 2008.

J. Osorio-guillén, S. Lany, and A. Zunger, Nonstoichiometry and Hole Doping in NiO, AIP Conf. Proc. 2010, pp.128-129

W. Jang, Y. Lu, W. Hwang, T. Hsiung, and H. P. Wang, Point Defects in Sputtered NiO Films, Appl. Phys. Lett, p.62103, 2009.

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells, J. Am. Chem. Soc, vol.131, pp.6050-6051, 2009.

M. T. Greiner, M. G. Helander, Z. Wang, W. Tang, and Z. Lu, Effects of Processing Conditions on the Work Function and Energy-Level Alignment of NiO Thin Films, J. Phys. Chem. C, vol.114, pp.19777-19781, 2010.

A. H. Madjid and J. M. Martinez, Thermionic Emission from Nickel Oxide, Phys. Rev. Lett, vol.28, pp.1313-1315, 1972.

J. Olivier, B. Servet, M. Vergnolle, M. Mosca, and G. Garry, Stability/Instability of Conductivity and Work Function Changes of ITO Thin Films, UV-Irradiated in Air or Vacuum: Measurements by the Four-Probe Method and by Kelvin Force Microscopy, Synth. Met, vol.122, pp.87-89, 2001.

L. Hu, J. Peng, W. Wang, Z. Xia, J. Yuan et al., Sequential Deposition of CH 3 NH 3 PbI 3 on Planar NiO Film for Efficient Planar Perovskite Solar Cells, ACS Photonics, vol.1, pp.547-553, 2014.

Z. Zhai, X. Huang, M. Xu, J. Yuan, J. Peng et al., Greatly Reduced Processing Temperature for a Solution-Processed NiO x Buffer Layer in Polymer Solar Cells, Adv. Energy Mater, vol.3, pp.1614-1622, 2013.

T. Kamiya, H. Ohta, M. Kamiya, K. Nomura, K. Ueda et al., Li-Doped NiO Epitaxial Thin Film with Atomically Flat Surface, J. Mater. Res, vol.19, pp.913-920, 2004.

W. Jang, Y. Lu, W. Hwang, and W. Chen, Electrical Properties of Li-Doped NiO Films, J. Eur. Ceram. Soc, vol.30, pp.503-508, 2010.

M. Park, I. J. Park, S. Park, J. Kim, W. Jo et al., Enhanced Electrical Properties of Li-Doped NiO x Hole Extraction Layer in p-i-n Type Perovskite Solar Cells, Curr. Appl. Phys, vol.18, pp.55-59, 2018.