A. P. Abbott, G. Capper, D. L. Davies, H. L. Munro, R. K. Rasheed et al., Preparation of Novel, Moisture-stable, Lewis-acidic Ionic Liquids Containing Quaternary Ammonium Salts with Functional Side Chains, Chem. Commun, 2001.

A. P. Abbott, D. Boothby, G. Capper, D. L. Davies, and R. K. Rasheed, Deep Eutectic Solvents Formed Between Choline Chloride and Carboxylic Acids: Versatile Alternatives to Ionic Liquids, J. Am. Chem. Soc, vol.126, pp.9142-9147, 2004.

E. L. Smith, A. P. Abbott, and K. S. Ryder, Deep Eutectics Solvents (DESs) and their Applications, Chem. Rev, vol.114, pp.11060-11082, 2014.

R. A. Marcus, On the Theory of Oxidation-Reduction Reactions Involving Electron Transfer, J. Chem. Phys, vol.24, pp.966-978, 1955.

N. S. Hush, Adiabatic Rate Processes at Electrodes .1. Energy-Charge Relationships, J. Chem. Phys, vol.28, pp.962-972, 1958.

J. Savéant, Elements of Molecular and Biomolecular Electrochemistry: An Electrochemical Approach to Electron Transfer Chemistry

M. J. Weaver, Dynamic Solvent Effects on Activated Electron-Transfer Reactions: Principle, Pitfalls, and Progress, Chem. Rev, vol.92, pp.463-480, 1992.

R. Fawcett,

A. Gaál and . Misicak,

, Estimation of the Rate Constant for Electron Transfer in Room Temperature Ionic Liquids, J. Electroanal. Chem, vol.660, pp.230-233, 2011.

R. M. Lynden-bell, Does Marcus Theory apply to redox processes in ionic liquids ? A Simulation study, Electrochem. Commun, vol.9, pp.1857-1861, 2007.

J. Zhang and A. M. Bond, Conditions Required To Achieve the Apparent Equivalence of Adhered Solid-and Solution-Phase Voltammetry for Ferrocene and Other Redox-Active Solids in Ionic Liquids, Anal. Chem, vol.75, pp.2694-2702, 2003.

C. Lagrost, L. Preda, E. Volanschi, and P. Hapiot, Heterogeneous Electron-Transfer Kinetics of Nitro Compounds in Room-Temperature Ionic Liquids, J. Electroanal. Chem, vol.585, pp.1-7, 2005.

L. E. Barrosse-antle, A. M. Bond, R. G. Compton, A. M. O'mahony, E. I. Rogers et al., Voltammetry in Room Temperature Ionic Liquids: Comparisons and Contrasts with Conventional Electrochemical Solvents, Chem. Asian J, vol.5, pp.202-230, 2010.

P. Hapiot and C. Lagrost, Electrochemical Reactivity in Room-Temperature Ionic Liquids, Chem. Rev, vol.108, pp.2238-2264, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01151567

N. Frenzel, J. Hartley, and G. Frisch, Voltammetric and Spectroscopic Study of Ferrocene and Hexacyanoferrate and the Suitability of their Redox Couples as Internal Standards in Ionic Liquids, Phys. Chem. Chem. Phys, vol.19, pp.28841-28852, 2017.

A. C. Nkuku and R. J. Lesuer, Electrochemistry in Deep Eutectic Solvents, J. Phys. Chem. B, vol.111, pp.13271-13277, 2007.

L. Bahadori, N. S. Manan, M. H. Chakrabarti, M. A. Hashim, F. S. Mjalli et al., The Electrochemical Behaviour of Ferrocene in Deep eutectic Solvents Based on Quaternary Ammonium and Phosphonium Salts, Phys. Chem. Chem. Phys, vol.15, pp.1707-1714, 2013.

L. Bahadori, M. H. Chakrabarti, F. S. Mjalli, I. M. Alnashef, N. S. Manan et al., Physicochemical Properties of Ammonium-Based Deep Eutectic Solvents and their Electrochemical Evaluation Using Organometallic Reference Redox Systems, Electrochimica Acta, vol.113, pp.205-211, 2013.

A. M. Sakita, R. D. Noce, C. S. Fugivara, and A. V. Benedetti, Semi-integrative Voltammetry as an Efficient Tool To Study Simple Electrochemical Systems in Deep Eutectic Solvents, Anal. Chem, vol.89, pp.8296-8303, 2017.

S. Fryars, E. Limanton, F. Gauffre, L. Paquin, C. Lagrost et al., Diffusion of Redox Active Molecules in Deep Eutectic Solvents, J. Electroanal. Chem, vol.819, pp.214-219, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01812103

A. Renjith and V. Lakshminarayanan, Electron-Transfer Studies of Model Redox-Active Species (Cationic, Anionic, and Neutral) in Deep Eutectic Solvents, J. Phys. Chem C, vol.122, pp.25411-25421, 2018.

D. Shen, K. Steinberg, and R. Akolkar, Avoiding Pitfalls in the Determination of Reliable Electrochemical Kinetics Parameters for the Cu 2+ /Cu 1+ Reduction Reaction in Deep Eutectic Solvents, J. Electrochem. Soc, vol.165, pp.808-815, 2018.

C. P. Andrieux, P. Hapiot, and J. Savéant, Fast Kinetics by Means of Direct and Indirect Electrochemical Techniques, Chem. Rev, vol.90, pp.723-738, 1990.

A. J. Bard and L. R. Faulkner, Electrochemical Methods Fundamentals and Applications, 2000.

J. C. Imbeaux and J. Savéant, Convolutive Potential Sweep Voltammetry: I. Introduction, J. Electroanal. Chem, vol.44, pp.169-187, 1973.

D. Garreau and J. Savéant, Linear Sweep Voltammetry -Compensation of Cell Resistance and Stability -Determination of Residual Uncompensated Resistance, J. Electroanal. Chem, vol.35, pp.309-331, 1972.

D. Garreau, P. Hapiot, and J. Savéant, Instrumentation for Fast Voltammetry at Ultramicroelectrodes -Stability and Bandpass Limitations, J. Electroanal. Chem, vol.272, pp.1-16, 1989.

R. L. Mccreery, Advanced Carbon Electrode Materials for Molecular Electrochemistry, Chem. Rev, vol.108, pp.2646-2687, 2008.

M. Yamagata, N. Tachikawa, Y. Katayama, and T. Miura, Electrochemical Behavior of Several Iron Complexes in Hydrophobic Room-Temperature Ionic Liquids, Electrochimica Acta, vol.52, pp.3317-3322, 2007.

N. Tachikawa, Y. Katayama, and T. Miura, Electrode Kinetics of Some Iron Complexes in an Imide-Type Room-Temperature Ionic Liquid, J. Electrochem. Soc, vol.154, pp.211-216, 2007.

O. V. Klymenko, A. Oleinick, I. Svir, and C. A. Amatore, KISSA -Software for Simulation of Electrochemical Reaction Mechanisms of Any Complexity, 2019.

D. V. Matyushov and M. D. Newton, Electrode Reactions in Slowly Relaxing Media, J. Chem. Phys, p.147, 2017.

V. A. Nikitina, S. A. Kislenko, R. R. Nazmutdinov, M. D. Bronshtein, and G. A. Tsirlina, Ferrocene/Ferrocenium Redox Couple at Au(111)/Ionic Liquid and Au(111)/Acetonitrile Interfaces: A Molecular-Level View at the Elementary Act, J. Phys. Chem. C, vol.118, pp.6151-6164, 2014.

A. S. Barnes, E. Rogers, I. Streeter, L. Aldous, C. Hardacre et al., Extraction of Electrode Kinetic Parameters from Microdisc Voltammetric Data Measured under Transport Conditions Intermediate between Steady-State Convergent and Transient Linear Diffusion as Typically Applies to Room Temperature Ionic Liquids, J. Phys. Chem. B, vol.112, pp.7560-7565, 2008.

N. Fietkau, A. D. Clegg, R. G. Evans, C. Villagran, C. Hardacre et al., Electrochemical Rate Constants in Room Temperature Ionic Liquids : The Oxidation of a Series of Ferrocene Derivatives, ChemPhysChem, vol.7, pp.1041-1045, 2006.

C. Lagrost, D. Carrié, M. Vaultier, and P. Hapiot, Reactivities of Some Electrogenerated Organic Cation Radicals in Room-Temperature Ionic Liquids: Toward an Alternative to Volatile Organic Solvents?, J. Phys. Chem. A, vol.107, pp.745-752, 2003.

Y. Wang, E. I. Rogers, and R. G. Compton, The Measurement of the Diffusion Coefficients of Ferrocene and Ferrocenium and their Temperature Dependence in Acetonitrile using Double Potential Step Microdisk Electrode Chronoamperometry, J. Electroanal. Chem, vol.648, pp.15-19, 2010.

S. J. Konopka and B. Mcduffie, Diffusion Coefficients of Ferri-and Ferrocyanide Ions in Aqueous Media, Using Twin-Electrode Thin-Layer Electrochemistry, Anal. Chem, vol.42, pp.1741-1746, 1970.

D. Reuter, C. Binder, P. Lunkenheimer, and A. Loidl, Ionic Conductivity of Deep Eutectics Solvents : The role of Orientational Dynamics and Glassy Freezing, Phys. Chem. Phys. Chem, vol.21, pp.6801-6809, 2019.

A. Faraone, D. V. Wagle, G. A. Baker, E. C. Novak, M. Ohl et al., Glycerol Hydrogen-Bonding Network Dominates Structure and Collective Dynamics in a Deep Eutectic Solvent, J. Phys. Chem. B, vol.122, pp.1261-1267, 2018.

K. Nakamura and T. Shikata, Systematic Dielectric and NMR Study of the Ionic Liquid 1-Alkyl-3-Methyl Imidazolium, ChemPhysChem, vol.11, pp.285-294, 2010.