, The title product was obtained as a blue solid (44 mg, 21% yield). 1 H-NMR (400 MHz, THF-d 8 ) ? = 9, 18-8.99 (m, 4H), 8.90-8.70 (m, 4H), 7.94-7.87 (m, 4H), 7.87-7.64 (m, 16H), vol.100

, HRMS-ESI (m/z): [M + H] + (C 120 H 121 N 8 O 4 Zn): m/z = 1801, vol.878, p.8801, 1064.

, mL) was heated at 140 ? C for 16 h under argon. The resulting intense colored solution was cooled to room temperature, and the suspension was poured into cold methanol. The precipitated solid was then filtered off, and the precipitate was washed with hot methanol. The crude product was purified by column chromatography on silica gel using CH 2 Cl 2 /heptane (4:1) as eluent and then recrystallized from MeOH/CH 2 Cl 2 . The title compound was obtained as a blue solid (82 mg, 40% yield) 1 H-NMR (400 MHz, THF-d 8 ) ? = 9, 17-8.98 (m, 4H), 8.84-8.68 (m, 4H), 7.89-7.67 (m, 20H), 7.64 (dd, J 1 = 8.8, J 2 = 3.5 Hz, 4H), 7.59-7.44 (m, 12H), 7.42-7.36 (m, 4H), 7.35-7.26 (m, 8H), 2.14-1.97 (m, 16H), 1.19-1.02 (m, 16H), 0.73-0.54 (m, 40H). 13 C-NMR (101 MHz, vol.889, pp.828-774, 0945.

, mL) was heated to 140 ? C and stirred for 16 h under argon. The blue solution was allowed to cool to room temperature and poured into cold methanol, left for half an hour. The crude product was filtered off. Then, this solid was washed with water and hot methanol, and dried in vacuum. The blue product was filtered over silica using heptane/CH 2 Cl 2 (3:2) as eluent and then recrystallized from CH 2 Cl 2 /MeOH. The title compound was obtained as a blue solid (74 mg, 37% yield). 1 H-NMR (400 MHz, THF-d 8 ) ? = 8.50-7.88 (broad, 8H), 7.88-7.78 (m, 8H), 7.77-7.67 (m, 12H), 7.66-7.42 (m, 16H), 7.42-7.36 (m, 4H), 7.34-7.24 (m, 8H), 2.18-1.97 (m, 16H), 1.18-1.02 (m, 16H), 0.77-0.54 (m, 40H), ?5.65 (s, 2H). 13 C-NMR (101 MHz, vol.827, pp.2952-2857, 0928.

, UV-Vis absorption spectra were recorded on a Jasco V-570 spectrophotometer. Steady-state fluorescence measurements were performed on dilute solutions (ca. 10 ?6 M, optical density <0.1) contained in standard 1-cm quartz cuvettes using an Edinburgh Instrument (FLS920) spectrometer in photon-counting mode. Fully corrected emission spectra were obtained

J. Boudon, J. Paris, Y. Bernhard, E. Popova, R. A. Decreau et al., Magneto-optical nanomaterials: A SPIO-phthalocyanine scaffold built step-by-step towards bimodal imaging, Chem. Commun, vol.49, 2013.

W. Kuzyniak, E. A. Ermilov, D. Atilla, A. G. Gürek, B. Nitzsche et al., Tetra-triethyleneoxysulfonyl substituted zinc phthalocyanine for photodynamic cancer therapy, Photodiag. Photodyn. Therapy, vol.13, 2016.

J. Schmitt, S. Jenni, A. Sour, V. Heitz, F. Bolze et al., A Porphyrin Dimer-GdDOTA Conjugate as a Theranostic Agent for One-and Two-Photon Photodynamic Therapy and MRI, Bioconjugate Chem, vol.29, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02071234

L. Shi, C. Nguyen, M. Daurat, A. C. Dhieb, W. Smirani et al., Biocompatible Conjugated Fluorenylporphyrins for Two-photon Photodynamic Therapy and Fluorescence Imaging, Chem. Commun, vol.55, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02307031

L. B. Josefsen and R. W. Boyle, Unique Diagnostic and Therapeutic Roles of Porphyrins and Phthalocyanines in Photodynamic Therapy, Imaging and Theranostics. Theranostics, vol.2, p.916, 2012.

J. M. Dabrowski, B. Pucelik, A. Regiel-futyra, M. Brindell, O. Mazuryk et al., Engineering of relevant photodynamic processes through structural modifications of metallotetrapyrrolic photosensitizers, Coord. Chem. Rev, vol.325, 2016.

T. Nyokong, Effects of substituents on the photochemical and photophysical properties of main group metal phthalocyanines, Coord. Chem. Rev, vol.251, p.1707, 2007.

J. D. Miller, E. D. Baron, H. Scull, A. Hsia, J. C. Berlin et al., Photodynamic therapy with the phthalocyanine photosensitizer Pc 4: The case experience with preclinical mechanistic and early clinical-translational studies, Toxicol. Appl. Pharmcol, vol.224, p.290, 2007.

F. Figueira, P. M. Pereira, S. Silva, J. A. Cavaleiro, and J. P. Tomé, Porphyrins and Phthalocyanines Decorated with Dendrimers: Synthesis and Biomedical Applications, Current Org. Synth, vol.11, 2014.

N. Venkatram, D. N. Rao, L. Giribabu, and S. V. Rao, Femtosecond nonlinear optical properties of alkoxy phthalocyanines at 800 nm studied using Z-Scan technique, Chem. Phys. Lett, vol.464, p.211, 2008.

N. S. Makarov, M. Drobizhev, and A. Rebane, Two-photon absorption standards in the 550-1600 nm excitation wavelength range, Opt. Express, vol.16, p.4029, 2008.

M. Drobizhev, N. S. Makarov, A. Rebane, G. De-la-torre, and T. Torres, Strong Two-Photon Absorption in Push-Pull Phthalocyanines: Role of Resonance Enhancement and Permanent Dipole Moment Change upon Excitation, J. Phys. Chem. C, vol.112, 2008.

M. Morisue, K. Ogawa, K. Kamada, K. Ohta, and Y. Kobuke, Strong two-photon and three-photon absorptions in the antiparallel dimer of a porphyrin-phthalocyanine tandem, Chem. Commun, vol.46, 2010.

F. Bolze, S. Jenni, A. Sour, and V. Heitz, Molecular photosensitisers for two-photon photodynamic therapy, Chem. Commun, vol.53, 2017.

Z. Sun, L. Zhang, F. Wu, and Y. Zhao, Photosensitizers for Two-Photon Excited Photodynamic Therapy, Adv. Funct. Mater, vol.27, p.1704079, 2017.

Z. Liu, X. Xiong, Y. Li, S. Lia, and J. Qin, Synthesis, optical properties and singlet oxygen generation of a phthalocyanine derivative containing strong two-photon-absorbing chromophores in the periphery, Photochem. Photobiol. Sci, vol.10, 1804.

C. O. Paul-roth and G. Simonneaux, Porphyrins with fluorenyl and fluorenone pendant arms, Tetrahedron Lett, vol.47, 2006.

C. O. Paul-roth and G. Simonneaux, Porphyrins with fluorenyl and fluorenone pendant arms as red-light-emitting devices, C.R. Acad. Sci. Ser. IIb Chim, vol.9, 1277.

B. Li, J. Li, Y. Fu, and Z. Bo, Porphyrins with Four Monodisperse Oligofluorene Arms as Efficient Red Light-Emitting Materials, J. Am. Chem. Soc, vol.126, 2004.

C. O. Paul-roth, J. A. Williams, J. Letessier, and G. Simonneaux, New tetra-aryl and bi-aryl porphyrins bearing 5,15-related fluorenyl pendants: The influence of arylation on fluorescence, Tetrahedron Lett, vol.48, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00355390

C. O. Paul-roth, J. Rault-berthelot, and G. Simonneaux, New polymers for catalytic carbene transfer: Electropolymerization of tetrafluorenylporphyrinruthenium carbon monoxide, Tetrahedron, vol.60, p.12169, 2004.

S. Drouet, C. O. Paul-roth, and G. Simonneaux, Synthesis and photophysical properties of porphyrins with fluorenyl pendant arms, Tetrahedron, vol.65, 2009.

S. Drouet and C. O. Paul-roth, Fluorenyl Dendrimer Porphyrins: Synthesis and Photophysical Properties, Tetrahedron, vol.65, 2009.

E. M. Harth, S. Hecht, B. Helms, E. E. Malmstrom, J. M. Fréchet et al., The Effect of Macromolecular Architecture in Nanomaterials: A Comparison of Site Isolation in Porphyrin Core Dendrimers and Their Isomeric Linear Analogues, J. Am. Chem. Soc, vol.124, 2002.

O. Mongin, V. Hugues, M. Blanchard-desce, A. Merhi, S. Drouet et al., Fluorenyl porphyrins for combined two-photon excited fluorescence and photosensitization, Chem. Phys. Lett, vol.625, p.151, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01153413

D. Yao, X. Zhang, A. Triadon, N. Richy, O. Mongin et al., New Conjugated meso-Tetrafluorenylporphyrin-cored Derivatives as Fluorescent Two-photon Photosensitizers for Singlet Oxygen Generation, Chem. Eur. J, vol.23, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01475696

D. S. Lawrence and D. G. Whitten, Photochemistry and Photophysical Properties of Novel, Unsymmetrically Substituted Metallophthalocyanines, Photochem. Photobiol, vol.64, 1996.

P. S. Vincett, E. M. Voigt, and K. E. Rieckhoff, Phosphorescence and fluorescence of phthalocyanines, Chem. Phys, vol.55, p.4131, 1971.

A. Ogunsipe, D. Maree, and T. Nyokong, Solvent effects on the photochemical and fluorescence properties of zinc phthalocyanine derivatives, J. Mol. Struct, vol.650, p.131, 2003.

C. A. Barker, X. Zeng, S. Bettington, S. A. Batsanov, M. R. Bryce et al., Phthalocyanine and Porphyrazine Derivatives with Multifluorenyl Substituents as Efficient Deep-Red Emitters, Chem. Eur. J, vol.13, p.6710, 2007.

B. Cabir, M. S. Ag?rtas, E. Duygulu, and F. Yuksel, Synthesis of some metallophthalocyanines bearing 9-phenyl-9Hfluoren-9-yl) oxy functional groups and investigation of their photophysical properties, J. Mol. Struct, 1142.

B. Görlach, M. Dachtler, T. Glaser, K. Albert, and M. Hanack, Synthesis and separation of structural isomers of, Chem. Eur. J, vol.2, issue.3, p.16, 2001.

A. Troisi and M. A. Ratner, Molecular rectification through electric field induced conformational changes, J. Am. Chem. Soc, vol.124, 2002.

C. Maertens, C. Detrembleur, P. Dubois, R. Jérôme, C. Boutton et al., Structure-Second-Order Polarizability Relationship in Chromophores Incorporating a Spacer: A Joint Experimental and Theoretical Study, Chem. Eur. J, vol.5, p.369, 1999.

P. P. Shorygin and B. K. Ya, Conjugation and the periodic system of the elements, Russ. Chem. Rev, vol.60, 1991.

T. Haruhiko, S. Shojiro, O. Shojiro, and S. Shinsaku, Synthesis of phthalocyanines from phthalonitrile with organic strong bases, Chem. Lett, p.1277, 1980.

S. Touaiti, A. Hajri, M. S. Kahouech, J. Khiari, and B. Jamoussi, Synthesis and characterization of new Zn-phtalocyanine-based semi-conducting materials, Arab. J. Chem, vol.10, 1553.

R. D. George and A. W. Snow, Synthesis of 3-nitrophthalonitrile and tetra-?-substituted phthalocyanines, J. Heterocycl. Chem, vol.32, 1995.

K. Sonogashira, Y. Tohda, and N. Hagihara, Convenient Synthesis of Acetylenes: Catalytic Substitutions of Acetylenic Hydrogen with Bromoalkenes, Iodoarenes, and Bromopyridines, Tetrahedron Lett, vol.50, p.4467, 1975.

D. Yao, X. Zhang, O. Mongin, F. Paul, and C. O. Paul-roth, Synthesis and Characterization of New Conjugated Fluorenyl-Porphyrin Dendrimers for Optics, Chem. Eur. J, vol.22, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01286284

T. Haruhiko, S. Shojiro, and S. Shinsaku, Synthesis of metallophthalocyanines from phthalonitrile with strong organic bases, Chem. Lett, p.313, 1983.

M. Durmu and S. Yexsilot, Separation and mesogenic properties of tetraalkoxy-substituted phthalocyanine isomers, New J. Chem, 2006.

N. Kobayashi, H. Ogata, N. Nonaka, and E. A. Luk&apos;yanets, Effect of peripheral substitution on the electronic absorption and fluorescence spectra of metal-free and zinc phthalocyanines, Chem. Eur. J, vol.9, 2003.

D. A. Fernandez, J. Awruch, and L. E. Dicelio, Photophysical and Aggregation Studies of t-Butyl-Substituted Zn Phthalocyanines, Photochem. Photobiol, vol.63, 1996.

, In principle four different regioisomers, two of them being centrosymmetric, can be formed in various ratios during the condensation reaction of their mono-functionalized phthalonitrile precursors

J. M. Fox, T. J. Katz, S. V. Elshocht, T. Verbiest, M. Kauranen et al., Synthesis, self-assembly, and nonlinear optical properties of conjugated helical metal phthalocyanine derivatives, J. Am. Chem. Soc, vol.121, 1999.

A. De-la-escosura, M. V. Martínez-díaz, P. Thordarson, A. E. Rowan, R. J. Nolte et al., Donor-Acceptor Phthalocyanine Nanoaggregates, J. Am. Chem. Soc, vol.125, 2003.

A. Gouloumis, D. González-rodríguez, P. Vázquez, T. Torres, S. Liu et al., Control Over Charge Separation in Phthalocyanine-Anthraquinone Conjugates as a Function of the Aggregation Status, J. Am. Chem. Soc, vol.128, 2006.

C. Piechocki and J. Simon, Synthesis of a polar discogen. A new type of discotic mesophase, J. Chem. Soc. Chem. Commun, pp.259-260, 1985.

D. S. Terekhov, K. J. Nolan, C. R. Mcarthur, and C. C. Leznoff, 24-octaalkynylphthalocyanines and the effects of concentration and temperature on their 1 H NMR spectra, J. Org. Chem, vol.2, issue.9, p.61, 1996.

M. J. Chen and J. W. Rathke, Dimeric aggregates of five-coordinated methyl(phthalocyaninato)Rh(III): 1 H NMR evidence for staggered and slipped cofacial dimers, J. Porph. Phthalocyan, vol.5, 2001.

L. Edwards and M. Gouterman, Vapor Absorption Spectra and Stability, Phthalocyanines. J. Mol. Spectro, vol.33, 1970.

M. Van-leeuwen, A. Beeby, and S. H. Ashworth, The photochemistry and photophysics of a series of non-peripherally substituted zinc phthalocyanines, Photochem. Photobiol. Sci, vol.9, p.370, 2010.

M. Van-leeuwen, A. Beeby, I. Fernandes, and S. H. Ashworth, The photochemistry and photophysics of a series of alpha octa(alkyl-substituted) silicon, zinc and palladium phthalocyanines, Photochem. Photobiol. Sci, vol.13, 2014.

L. D. Lavis and R. T. Raines, Bright Ideas for Chemical Biology, ACS Chem. Bio, vol.3, p.142, 2008.

A. Ogunsipe, J. Chen, and T. Nyokong, Photophysical and photochemical studies of zinc(II) phthalocyanine derivatives-effects of substituents and solvents, New J. Chem, vol.28, 2004.

C. Xu and W. W. Webb, Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm, J. Opt. Soc. Am. B, vol.13, p.481, 1996.

M. Drobizhev, S. Makarov, Y. Stepanenko, and A. Rebane, Near-infrared two-photon absorption in phthalocyanines: Enhancement of lowest gerade-gerade transition by symmetrical electron-accepting substitution, J. Chem. Phys, vol.124, 2006.

G. Ricciardi, A. Rosa, and E. J. Baerends, Ground and Excited States of Zinc Phthalocyanine Studied by Density Functional Methods, J. Phys. Chem. A, vol.105, 2000.

J. H. Zagal, M. A. Gulppi, and G. Cardenas-jiron, Metal-centered redox chemistry of substituted cobalt phthalocyanines adsorbed on graphite and correlations with MO calculations and Hammett parameters, Polyhedron, vol.19, 2000.

C. Hansch, A. Leo, and R. W. Taft, A survey of Hammett substituent constants and resonance and field parameter, Chem. Rev, vol.91, 1991.

D. A. Happer and G. J. Wright, The variation of substituent resonance effects with electron demand, J. Chem. Soc. Perkin Trans, pp.694-698, 1979.

M. Pawlicki, H. A. Collins, R. G. Denning, and H. L. Anderson, Two-Photon Absorption and the Design of Two-Photon Dyes, Angew. Chem. Int. Ed, vol.48, 2009.

D. D. Perrin and W. L. Armarego, Purification of Laboratory Chemicals, 1988.

C. L. Devi, K. Yesudas, N. S. Makarov, V. J. Rao, K. Bhanuprakash et al., Fluorenylethynylpyrene derivatives with strong two-photon absorption: Influence of substituents on optical properties, J. Mater. Chem. C, vol.3, p.3730, 2015.

N. Demas and G. A. Crosby, Measurement of photoluminescence quantum yields, J. Phys. Chem, p.991, 1971.

G. R. Eaton, Reference Materials for Fluorescence Measurment, Pure Appl. Chem, vol.60, p.1107, 1988.

M. H. Werts, N. Nerambourg, D. Pélégry, Y. Le-grand, and M. Blanchard-desce, Action cross sections of two-photon excited luminescence of some Eu(III) and Tb(III) complexes, Photochem. Photobiol. Sci, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01206347

P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas. Phys. Rev, vol.136, 1964.

R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, 1989.

A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A, vol.38, 1988.

A. D. Becke, A new mixing of Hartree-Fock and local-density-functional theories, J. Chem. Phys, vol.98, p.239, 1993.

A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys, vol.98, 1993.

C. Lee, W. Yang, and R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B, vol.37, 1988.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb et al.,

I. Gaussian, C. T. Wallingford, and . Usa, Sample Availability: Samples of the compounds are available from the authors. © 2020 by the authors, Licensee MDPI, 2010.