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Depicting the genetic architecture 
of pediatric cancers through an 
integrative gene network approach
Clara Savary1, Artem Kim1, Alexandra Lespagnol2, Virginie Gandemer1,3, Isabelle Pellier4, 
Charlotte Andrieu5,6, Gilles Pagès7,8, Marie-Dominique Galibert1,2, Yuna Blum   9,10 & 
Marie de Tayrac1,5,10*

The genetic etiology of childhood cancers still remains largely unknown. It is therefore essential 
to develop novel strategies to unravel the spectrum of pediatric cancer genes. Statistical network 
modeling techniques have emerged as powerful methodologies for enabling the inference of gene-
disease relationship and have been performed on adult but not pediatric cancers. We performed 
a deep multi-layer understanding of pan-cancer transcriptome data selected from the Treehouse 
Childhood Cancer Initiative through a co-expression network analysis. We identified six modules 
strongly associated with pediatric tumor histotypes that were functionally linked to developmental 
processes. Topological analyses highlighted that pediatric cancer predisposition genes and potential 
therapeutic targets were central regulators of cancer-histotype specific modules. A module was related 
to multiple pediatric malignancies with functions involved in DNA repair and cell cycle regulation. This 
canonical oncogenic module gathered most of the childhood cancer predisposition genes and clinically 
actionable genes. In pediatric acute leukemias, the driver genes were co-expressed in a module related 
to epigenetic and post-transcriptional processes, suggesting a critical role of these pathways in the 
progression of hematologic malignancies. This integrative pan-cancer study provides a thorough 
characterization of pediatric tumor-associated modules and paves the way for investigating novel 
candidate genes involved in childhood tumorigenesis.

Cancer remains the leading cause of death by disease in children of less than fourteen years of age1. Improving 
the management of pediatric cancer is essential and will benefit from more accurate diagnosis, new personalized 
treatment and development of specific and less damaging therapies. To face these challenges, it is necessary to 
unravel the complete genetic repertoire of pediatric malignancies. Recent studies have improved the understand-
ing of the genetics of childhood cancer, but have mainly focused on depicting the germline and somatic muta-
tional landscape of these diseases2–4.

Several evidences demonstrated that the biology and genetics of pediatric cancers set them apart from adult 
tumors4,5. Childhood cancers have a 14-times lower mutation rate compared to adult tumors and mostly arise 
from mutations in few driver genes. Somatic alterations mostly target a handful of major genes such as CDKN2A, 
NOTCH1, NRAS, KRAS or TP53, and pathways disrupted by driver alterations are either common to cancer (e.g. 
cell cycle) or specific to pediatric cancer histotypes4. More than half of the driver genes are restricted to one cancer 
histotype and 83% of them are not shared between hematologic and solid tumors. This indicates that certain genes 
and pathways are exclusively dysregulated in a single type of childhood cancer.
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Regarding hereditary predisposition, genome-wide studies reported that pathogenic germline vari-
ants were identified in 8–10% of the affected children and adolescents2,6–8. This proportion is likely underes-
timated considering that only cancer-related genes were analyzed for pathogenicity in these studies. To date, 
over 100 cancer predisposition genes have been described and most of the associated pathogenic germline var-
iants were loss of function mutations in DNA or double-stranded break repair genes2,3,8. The total spectrum of 
cancer-predisposition genes involved in childhood tumorigenesis still remains to be uncovered.

Tumor initiation and progression result from complex interplay between germline and somatic events that 
shape the transcriptional landscape of tumors9,10. Integration of transcriptome-based knowledge has emerged as 
a powerful method for prioritizing genomic alterations in cancers11. Statistical network modeling is essential for 
interpreting genotype-to-phenotype relationships or discerning transcriptional regulatory programs12–14. Studies 
reported that mature pediatric tumors mirror the conserved transcriptional programs of embryonic cell popu-
lations that have been subject to genomic changes15. A system-level understanding of how the genetic mutations 
affect transcriptional profile has been provided in adult pan-cancer data16. Such analyses revealed common func-
tional gene clusters that are shared by multiple adult cancer types.

In onco-pediatric research, construction of co-expression networks achieved interesting results in iden-
tifying predictive molecular biomarkers and in unraveling differential regulatory molecular programs by 
analyzing matched normal-tumor samples14,17. The published studies have only focused on deciphering 
co-expression networks of one particular histotype and, therefore, lack to provide a global view of both com-
mon and histotype-specific processes that drive childhood tumorigenesis. This requires a deep exploration of the 
co-expression network obtained by analyzing pan-cancer childhood data.

Here, we carried out computational analyses of the transcriptome data of 820 pediatric cancer samples 
selected from the Treehouse Childhood Cancer Initiative (TCCI) dataset across six cancer histotypes. We con-
structed a co-expression network using weighted gene co-expression network analysis (WGCNA) to capture 
transcriptional relationships between genes in pediatric cancers. We associated the resulting modules with tumor 
types by examining their transcriptional profiles and by characterizing their biological functions. We determined 
the most connected genes within modules and highlighted their biological relevance to different tumor types. We 
investigated for the over-representation of pediatric cancer gene sets in these modules and mapped them into 
the co-expression network. Our integrative analysis provides a working frame for investigating candidate genes 
involved in pediatric tumorigenesis through the deep-level exploration of modules specifically associated with 
childhood cancers.

Results
Childhood cancer histotypes are characterized by distinct transcriptional profiles.  We hypoth-
esized that transcriptome data from pediatric cancer samples could provide a thorough understanding of the key 
genes and pathways implicated in childhood tumorigenesis. We thus developed an integrative study for which the 
general workflow is displayed in Fig. 1.

We selected 820 childhood tumor samples across six different cancer types from the TCCI dataset (Fig. 2a; 
Additional File 2: Table S1). The median age at diagnosis (MAD) of the patients ranged from 3 to 9 years old 
depending on tumor types (Fig. 2b). The MAD was higher compared to previous studies for Neuroblastoma 
(NBL; 2.9 years old in our study vs 1.5 years old reported previously)18, Wilms Tumor (WT; 4 vs 3.5 years old)19, 
Medulloblastoma (MBL; 7 vs 6 years old)20 and Acute Myeloid Leukemia (AML; 8.8 vs 6.4 years old)21. The 
median age was consistent with recent reports for Acute Lymphoblastic Leukemia (ALL; 6.4 vs 6.5 years old)22, 
but lower for glioma with 8 vs 9 years old23. Consistent with the American Cancer Society statistics of 2014, we 
found a higher incidence of males in NBL (sex ratio = 1.42) and MBL (sex ratio = 1.59), along with a slight female 
preponderance in WT (sex ratio = 0.77) (Fig. 2c).

We next applied a t-distributed stochastic neighbor embedding (t-SNE) algorithm on the RNA-Seq data to 
refine groups of childhood tumors by projecting the patient samples in a low-dimensional space based on their 
transcriptional features. Hierarchical clustering of the resulting coordinates revealed six clusters matching the 
pediatric tumor histotypes (Fig. 2d; Additional file: Table S1). We observed a clear segregation between hema-
tologic and solid tumors supporting the notion that acute childhood leukemias have distinct transcriptional 
profiles as compared to solid tumors. Among childhood solid tumors, NBL, MBL and glioma shared more similar 
expression patterns than WT samples. Two subgroups were outlined in gliomas, with expression profiles repre-
sentative of the PDGFRA-amplified vs PDGRA-non amplified gene signatures described in DIPG tumors (Data 
not shown)24. Considering the distinct embryonic origin of childhood tumors, our findings demonstrate that 
each pediatric cancer type has a specific transcriptome signature.

Childhood cancer modules are representative of specific tumor histotypes.  After demon-
strating that pediatric tumors were characterized by specific gene expression profiles, we have undertaken a 
network-based approach to identify modules of genes particularly associated with childhood tumors. We con-
structed modules of genes sharing highly similar expression patterns across pediatric pan-cancer samples by 
performing WGCNA analysis on the transcriptome data of the study cohort. We identified 23 co-expression 
modules, labeled by color (Fig. 3a). For all genes, we assessed their biological relevance with regard to different 
tumor types using the gene significance (GS) measure and all the results have been reported (Additional File 1: 
Table S2). In six modules, the co-expressed genes exhibited high values of GS and high specificity of associations 
with histologic tumor subtypes (Fig. 3a). The stability and reliability of the identified modules were validated by 
bootstrapping and robustness analyses (Additional File 1: Table S3; Additional File 2: Fig. S1).

Cancer-histotype specific modules were defined as modules exhibiting highly specific association with a 
particular cancer type on the basis of (1) their gene expression levels in the tumor samples and (2) their gene 
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significance levels towards the cancer histotype. We first assessed module-tumor relationships by using Linear 
Discriminant Analysis (LDA) approach that maximizes the separation between tumor types based on the expres-
sion profiles of the modules (Additional File 1: Table S3; Additional File 2: Fig. S2a,b). A module was found 
strongly associated with a childhood cancer, when its absolute average expression levels in tumor samples was 
higher than an empirical threshold of 0.06 (see Methods). We identified six module/tumor associations, such 
as lightgreen/MBL (mean = 0.11), red/WT (mean = 0.08), magenta/NBL (mean = 0.06) and lightcyan/ALL 
(mean = 0.06). The genes of the midnightblue module were under-expressed in AML samples as compared to 
other cancers (mean = −0.06), as the genes of the tan module in glioma samples (mean = −0.06). Nine mod-
ules showed exclusive transcriptional patterns between cancer solid (CSTs) and liquid (CLTs) tumors. The black, 
blue, brown and darkred modules demonstrated high expression in CLTs vs low expression in CSTs, whereas the 
turquoise, pink, midnightblue, yellow and darkturquoise modules had high expression in CSTs vs low expres-
sion in CLTs. Transcriptional profiles of the magenta, red, lightgreen, lightcyan, green and midnightblue mod-
ule exhibited strong specificity towards NBL, WT, MBL, ALL, AML and AML, respectively (Additional File 2: 
Fig. S2c). We then performed statistical analyses that revealed strong positive correlations between the module 
membership (MM) of a gene and its biological significance towards a particular tumor histotype. These findings 
supported module/tumor associations such as lightcyan/ALL (R2 = 0.93, p < 0.001), magenta/NBL (R2 = 0.81, 
p < 0.001), red/WT (R2 = 0.8), midnightblue/AML (R2 = 0.8, p < 0.001), green/AML (R2 = 0.8, p < 0.001) and 
lightgreen/MBL (R2 = 0.51, p < 0.001) (Fig. 3b). A low correlation was identified between the tan module and 
glioma (R2 = 0.39, p < 0.001). To further demonstrate the significance of these module/tumor associations, we 
found that the second highest levels of correlation decreased to levels less than 0.5 with the other cancer types: 
lightcyan/WT (R2 = 0.22, p < 0.001), magenta/AML (R2 = 0.38, p < 0.001), red/AML (R2 = 0.48, p < 0.001), 
green/MBL (R2 = 0.45, p < 0.001), midnightblue/glioma (R2 = 0.35, p < 0.001), lightgreen/AML (R2 = 0.27, 
p < 0.001) (Additional File 2: Fig. S2d). The modules that fulfilled both established criteria and were defined 
as cancer-histotype specific and named according to their associated tumor, as the magenta-NBL, red-WT, 
lightcyan-ALL, lightgreen-MBL, midnightblue-AML and green-AML modules.

Cancer-histotype specific modules gather cornerstone biological functions involved in the 
physiopathology of the associated tumor.  Considering the associations between the modules and the 
specific tumor types, we reasoned that exploring the biological functions of the genes within modules would 
shade light on the subtype-specific processes implicated in pediatric cancers. To investigate this, we performed 
functional enrichment analyses using GO and KEGG annotation terms for each module (Additional File 1: 
Table S4).

We found that genes co-expressed in the magenta-NBL module were involved in the development of the 
autonomic (Fold Change (FC) = 22; FDR < 0.001) and sympathetic nervous system (FC = 36; FDR < 0.001), in 
line with the physiopathology of NBL that derives from postganglionic sympathetic neuroblasts (Fig. 4). The 
red-WT module was enriched in genes taking part in metanephros (FC = 29; FDR < 0.001), mesonephros 
(FC = 28; FDR < 0.001) and ureteric bud development (FC = 29; FDR < 0.001), which was consistent with the 

Figure 1.  Workflow of the overall integrative approach to decipher the modules associated with pediatric 
tumors. General workflow of the pan-cancer integrative study that consisted in the selection of 820 
pediatric cancer samples from the Treehouse Childhood Cancer Initiative, followed by a pre-processing and 
normalization procedure of the RNA-Seq data. We constructed a co-expression network and identified 23 co-
expression modules of genes sharing similar expression profiles across pediatric cancer samples. We performed 
a deep multi-layer examination of the resulting modules to identify module-tumor relationships, enrichment 
in biological processes and in relevant pediatric cancer gene sets. WGCNA, Weighted Gene Co-Expression 
Network Analysis; t-SNE, t-distributed Stochastic Neighbor Embedding.
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tumor initiation mechanisms of WT. Indeed, this embryonic tumor develops from residual ureteric bud and 
metanephric mesenchyme/blastema25. The lightcyan-ALL module was enriched in genes related to the anti-
gen recognition response by somatic gene rearrangement with V(D)J recombination (FC = 44; FDR < 0.001). 
Abnormal recombination during somatic rearrangements of surface immunoglobulin (Ig) and T cell antigen 
receptor (TCR) genes has been described in the transformation of lymphoid cells26. The lightgreen-MBL module 
was functionally related to visual (FC = 16; FDR < 0.001) and sensory perception (FC = 8; FDR < 0.001), along 
with forebrain development (FC = 7; FDR < 0.001). This is in accordance with the aberrant differentiation of the 
most aggressive subgroup of MBL in the photoreceptor program27. The over-expressed genes in the green-AML 
module were linked to myeloid-mediated immunity processes (FC = 14; FDR < 0.001). No enrichment was found 

Figure 2.  Clinical description of patient samples selected from the Treehouse Childhood Cancer Initiative 
(TCCI) dataset. (a) Distribution of cancer histotypes analyzed in our study that includes 820 tumor samples 
in patients with age at diagnosis younger than 18 years old selected from the TCCI dataset. (b) Distribution of 
patient ages at diagnosis (in years) by tumor types. (c) Clinical characteristics of patient samples in our study 
cohort by gender and project. (d) Distribution visualization of pediatric cancer samples using t-SNE analysis, a 
nonlinear multivariate method that embeds the high-dimensional data into a two-dimensional space. Each dot 
represents a patient sample, colored by tumor types. Hierarchical clustering of cancer samples is depicted by 
the 6 colored density maps and clusters are labeled according to the most represented cancer type. ALL, Acute 
Lymphoblastic Leukemia; AML, Acute Myeloid Leukemia; MBL, Medulloblastoma; NBL, Neuroblastoma; WT, 
Wilms Tumor.

https://doi.org/10.1038/s41598-020-58179-0


5Scientific Reports |         (2020) 10:1224  | https://doi.org/10.1038/s41598-020-58179-0

www.nature.com/scientificreportswww.nature.com/scientificreports/

in either GO or KEGG annotation terms for the midnightblue-AML module. Taken collectively, five out of the 
six cancer-histotype specific modules were enriched in biological functions consistent with the tissue origins and 
physiopathology of the related childhood cancer. The modules associated with pediatric tumors encompass genes 
implicated in developmental processes, supporting the close link between organogenesis and tumorigenesis in 
childhood cancers.

Co-expression modules functionally related to canonical oncogenic and onco-hematologic 
pathways in childhood cancers.  Functional examination of the 17 non-cancer-histotype specific mod-
ules revealed significant associations with either canonical oncogenic or onco-hematologic processes (Fig. 5; 
Additional File 1: Table S4). The tan module was enriched in cell cycle processes such as nuclear division 
(FC = 16; FDR < 0.001), but also DNA repair (FC = 9; FDR < 0.001) and replication (FC = 13; FDR < 0.001) 
that are commonly disrupted by pathogenic germline variants in childhood cancers2,8. The blue module was 
involved in lymphocyte differentiation (FC = 10; FDR < 0.001) and proliferation (FC = 8; FDR < 0.001) which is 

Figure 3.  Identification of cancer-histotype specific modules that are associated with distinct pediatric tumors. 
(a) Dendrogram showing genes sharing similar expression profiles across pediatric tumor samples and gathered 
in modules identified by WGCNA. Each branch of the dendrogram represents a gene assigned to one of the 
23 colored-label modules, the grey module gathers all non-assigned genes. Bars below are color-coded with 
a white (low percentage) to blue (high percentage) gradient to represent the robustness of the gene-module 
association; and a white (low value) to red (high value) gradient to give information on the absolute value of 
gene significance (GS; i.e., gene-tumor relationship) across tumor types. Six modules were highlighted (black 
box) due to high levels of GS for six distinct cancer histotypes. (b) Scatterplot representing the correlation 
between the absolute values of GS and Module Membership (MM; i.e., gene-module relationship) of the co-
expressed genes in a cancer-histotype specific module. The correlation coefficient and statistical probability are 
displayed (on top) and dots are colored by module colored-label. ALL, Acute Lymphoblastic Leukemia; AML, 
Acute Myeloid Leukemia; MBL, Medulloblastoma; NBL, Neuroblastoma; WT, Wilms Tumor.
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Figure 4.  Hub genes and biological processes of the childhood cancer-histotype specific modules. Visualization 
of the network plots for the magenta, red, lightgreen, lightcyan, midnightblue and green modules using igraph 
R library. Genes are represented as nodes and edges as the connectivity between gene pairs derived from the 
TOM. The size of the node is proportional to the sum of connections of the gene within the module. Nodes are 
labeled according to the HGNC symbols. For each module, the top 15 hub genes are highlighted by a white star 
and the cancer predispostion genes by gold-colored nodes. Biological characterization of the cancer-histotype 
specific modules is displayed as scatterplots below the associated network plot, except for the midnightblue 
module that did not show any significant enrichment. These scatterplots show the top 5 enriched canonical 
pathways in Gene Ontology (GO) annotation terms (on the left). Statistical probabilities are adjusted for 
multiple comparisons (FDR < 0.01) and reported as –log10(FDR). Dots are colored by module colored-label 
(on the right) and sized by the count number of genes matching the biological process in the module. IR, 
Immune response.
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Figure 5.  Hub genes and biological processes of the oncogenic and onco-hematologic modules in childhood 
cancers. Visualization of the network plots for the grey60, brown, tan, blue and pink modules using igraph R 
library. Genes are represented as nodes and edges as connectivity between gene pairs derived from the TOM. 
The size of the node is proportional to the sum of the connections of a gene within the module. Nodes are 
labeled according to the HGNC symbols. For each module, the top 15 hub genes are highlighted by a white star 
and the cancer predisposition genes by gold-colored nodes. Biological characterization of the cancer-histotype 
specific modules is displayed as scatterplots below the associated network plot, except for the pink module 
that did not show any significant enrichment. These scatterplots show the top 5 enriched canonical pathways 
in Gene Ontology (GO) annotation terms (on the left). Statistical probabilities are adjusted for multiple 
comparisons (FDR < 0.01) and reported as –log10(FDR). Dots are colored by module colored-label (on the 
right) and sized by the count number of genes matching the biological process in the module.
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consistent with the pathogenesis of ALL. Likewise, the grey60 module was related to the B-cell ALL subtype with 
functional enrichment in B cell activation (FC = 7; FDR < 0.001) and differentiation (FC = 10; FDR < 0.001). 
Despite functions specific to the B-cell ALL subtype, the grey60 module showed higher levels of expression in 
both acute leukemias and glioma samples, thereby, not fulfilling the « histotype-specific » criteria. The brown 
module was over-represented in genes linked to post-transcriptional and epigenetic processes, such as mRNA 
processing (FC = 9; FDR < 0.001) and histone modification (FC = 6; FDR < 0.001), which are believed to con-
tribute to relapse in acute leukemias28. Additional modules were associated with biological mechanisms having 
known implications in pediatric tumorigenesis, see Additional File 1: Table S4.

Pediatric cancer genes are significantly enriched in the associated cancer-histotype specific 
module.  Based on the PediCan database29, we defined different lists of pediatric cancer genes (pedCGs) impli-
cated in ALL (113 genes), AML (32 genes), WT (49 genes), MBL (113 genes), NBL (166 genes) and glioma (22 
genes) (Additional File 1: Table S2). We then tested their enrichment for each of the 23 co-expression modules 
and all the results are available in the Additional File 1: Table S5. We found the magenta-NBL module as signif-
icantly enriched in NBL pedCGs (OR = 2.9 [1.5–5.1]; p < 0.001), the lightcyan-ALL module in ALL pedCGs 
(OR = 4.4 [1.8–9.2]; p < 0.001), the red-WT module in WT pedCGs (OR = 6.9 [3.3–13.4]; p < 0.001), and the 
lightgreen-MBL module in MBL pedCGs (OR = 5.4 [2.1–11.7]; p < 0.001) (Fig. 6a; Additional File 1: Table S5).

Overall, 4 out of the 6 cancer-histotype specific modules were significantly enriched in the pediatric cancer 
genes of the associated tumor type. These findings support that genes in these cancer-histotype specific modules 
should be given higher priority in variants prioritization methodologies applied to childhood cancers.

Pediatric cancer predisposition genes and driver genes are enriched in childhood cancer mod-
ules.  Recently, Zhang and colleagues2 depicted the germline mutational landscape of pediatric tumors through 
a comprehensive pan-cancer study in a large cohort of children and adolescents. The pediatric cancer predis-
position genes (pedCPGs) were defined as cancer-related genes harboring pathogenic germline mutations in 
childhood cancer patients. We mapped the literature-based pedCPGs into the constructed childhood cancer 
co-expression network (Fig. 6b). We observed that cancer-related genes were not exclusively mutated in one his-
totype but rather altered in multiple pediatric tumors. For each module, we performed gene enrichment analyses 
in pedCPGs of the studied tumor types. We also tested for over-representation in potentially druggable genes 
(PDGs, i.e. genes having a direct or indirect targeted treatment available or under development) to assess the 
status of druggability of the modules.

This analysis revealed that the tan (PDGs, OR = 3.2 [1.65–5.75]; p < 0.001) and midnightblue-AML (PDGs, 
OR = 3.94 [1.9–7.36]; p < 0.001) modules encompassed most of the clinically actionable genes. We found the 
oncogenic (tan) module to be significantly enriched in pediatric cancer predisposition genes for 4 out of the 5 
tested histotypes (NBL pedCPGs, OR = 9.0 [3.3–21.2]; p < 0.001; ALL pedCPGs, OR = 8.3 [3.9–16.3]; p < 0.001; 
MBL pedCPGs, OR = 9.9 [2.4–31.3]; p = 1.4 × 10–3; glioma pedCPGs, OR = 9.7 [3.5–23]; p < 0.001) (Fig. 6a). 
No data were available for WT, as this tumor has not been studied by Zhang and colleagues2 (Fig. 6a; Additional 
File 1: Table S5). Most of the germline alterations affecting cancer genes in pediatric acute leukemia were signifi-
cantly enriched in the pink module (ALL pedCPGs, OR = 8.2 [1.7–8.9]; p = 1.3 × 10–3; AML pedCPGs, OR = 6.9 
[2.0–19.0]; p = 1.6 × 10–3). These results suggest that genes in the tan module, when mutated, are likely contribut-
ing to tumor initiation in multiple childhood cancers. We also identified a novel onco-hematologic module (pink) 
that gathers genes believed to be early genetic determinants in pediatric acute leukemia (Fig. 5).

Ma and colleagues4 identified pediatric cancer driver genes (pedCDGs) in a large cohort of childhood cancer 
patients. We recovered the published data of this study to build lists of cancer driver genes significantly mutated 
in ALL (106 genes), AML (33 genes), WT (12 genes) and NBL (8 genes) (Additional File 1: Table S2). The brown 
module was enriched in ALL pedCDGs (OR = 4.1 [2.4–6.7]; p < 0.001) and AML pedCDGs (OR = 6.1 [2.5–
13.7]; p < 0.001). The ALL driver genes were over-represented in the grey60 (OR = 4.55 [1.8–9.9]; p = 1.4 × 10–3) 
and lightcyan-ALL (OR = 4.7 [2.0–9.9]; p < 0.001) modules. We demonstrated that genes frequently altered by 
somatic alterations in pediatric ALL were significantly enriched in the grey60 module related to B cell develop-
ment and in the lightcyan-ALL module. The grey60 module could therefore, play a key role in the ALL tumorigen-
esis and was also associated with a favorable status of druggability (PDGs, OR = 3.71 [1.64–7.35]; p = 1.2 × 10−3).

Pediatric cancer genes are enriched in the hub genes of childhood cancer modules.  In 
network-based approach, hub genes are often identified as key regulators of the observed processes14,16,17,30, here 
the pathogenesis of childhood cancers. We defined hub genes as the most interconnected genes within a module. 
To provide novel insights into potential key regulators of childhood cancers, we performed an in-depth evalua-
tion of their hub genes and focused on the top 15 hub genes (Fig. 4).

The paired like homeobox 2B (PHOX2B) gene is one of the major predisposition gene for NBL31 and was 
identified as a key regulator in the magenta-NBL module. Other hub genes of this module were shown as essen-
tial for neural differentiation of the sympathoadrenal lineage (PHOX2A, HAND2, PHOX2B, ISL1) and com-
prised a novel candidate gene for NBL (ISL1)32,33. The paired box 2 (PAX2) was among the hub genes of the 
red-WT module and believed to be a tumor-inducing gene in WT with key role in kidney cell differentiation34. 
The major gene of predisposition to Wilms Tumor (WT1) was, however, ranked 483rd, as its expression was high 
in both WT and AML samples (Additional File 2: Fig. S3). In the lightcyan-ALL module, we identified as a key 
regulator the paired box 5 gene (PAX5) gene, known as the major predisposition gene in B-cell ALL35, one of 
the direct target of PAX5 (CD19) and a key player in B-cell differentiation (TCL1A)36. In the lightgreen-MBL 
module, the hub genes were involved in neurogenesis, particularly in the forebrain (OTX2, TBR1) and cerebellar 
development (OTX2, BARHL1, ZIC1 and ZIC4) with predominant expression in MBL37–41. Two of these hub 
genes (OTX2, NEUROD1) were the conductors of key transcriptional programs in the Group 3 subtype of MBL, 
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the most aggressive subtype of MBL37. The hub genes in the green-AML module encoded protein with roles 
in leukemogenesis and myeloid differentiation (PRAM1, RASGRP4, S100A9) or subject to recurrent alterations 
in infant AML (MYO1F)42–45. Statistical analyses supported that pediatric cancer genes were enriched among 
the hub genes of the six cancer-histotype specific modules (OR = 1.9 [1.2–2.9], p = 0.004). The pediatric can-
cer genes of one tumor type were enriched among the hub genes of the associated module (WT/red, OR = 4.8 
[1.8–14.4], FDR = 0.021; NBL/magenta, OR = 3.1 [1.5–6.4], FDR = 0.032; lightgreen/MBL, OR = 4.8 [1.7–12.1], 
FDR = 0.032; ALL/lightcyan, OR = 3.8 [1.4–9.2], FDR = 0.033).

Many of the key regulators in the canonical oncogenic (tan) module were involved in the processes leading 
to tumor cell proliferation and survival (TPX2, NCAPH, KIF11, NUSAP1, KIF23, MCM10) but most of them 
have not been associated with pediatric tumors (Fig. 5). Pediatric cancer predisposition genes for glioma (OR = 8 
[2.7–21.6], FDR = 0.004), ALL (OR = 5.8 [2.6–12.2], FDR = 0.001) and NBL (OR = 6.5 [2.2–16.7], FDR = 0.008) 
were enriched among the hub genes of the tan module. The hub genes of the grey60 module had major roles in 

Figure 6.  Enrichment analysis and mapping of literature-based pediatric cancer gene sets in childhood cancer 
modules. (a) Enrichment in relevant pediatric cancer gene lists for childhood cancer modules. Heatmap 
using OncoPrint displaying the over-representation results for Potentially Druggable Genes (PDGs), Cancer 
Predisposition Genes (CPGs), pediatric Cancer Predisposition Genes (pedCPGs) and pediatric Cancer Driver 
Genes (pedCDGs) associated with pediatric cancer cancers gene lists in oncogenic (tan), onco-hematologic 
(pink, grey60, brown, blue) and cancer-histotype specific (lightcyan, green, magenta, red, lightgreen, 
midnightblue) modules. Cells are color-coded according to the adjusted p-values using Bonferroni correction 
(legend on the right) and values are shown when p < 0.05. (b) Landscape of germline alterations in cancer 
genes across co-expression modules and pediatric tumor samples. Distribution of publicly available germline 
mutations in 43 autosomal dominant predisposing cancer genes identified by Zhang and colleagues (2015). 
Color-coded alterations (legend on the bottom) are displayed in cells with their frequency (barplots on top) 
for each sample (in columns). Samples are split in different grids by tumor types. Genes (in rows) are sorted 
by mutational rates and separated by label-colored modules in the following order: pink, turquoise, tan, 
brown, lightcyan, midnightblue, red, yellow, purple, grey60, cyan, salmon, blue, royalblue, magenta, green and 
greenyellow. ALL, Acute Lymphoblastic Leukemia; AML, Acute Myeloid Leukemia; MBL, Medulloblastoma; 
NBL, Neuroblastoma; WT, Wilms Tumor.
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innate immune recognition and activation (TLR1, TLR6, PTPRE, TRIM22, PARP14, ARHGEF6, IFIH1, NR3C1) 
(Fig. 5). Considering that hematologic malignancies employ unique immune evasion strategies as compared to 
solid malignancies, the hub genes of the grey60 module could constitute promising innate immune targets46. The 
key regulators of the brown module were involved in chromatin and histone modifications (CHD1, JMJD1C, 
NIPBL) and RNA metabolic processes (RC3H1, SREK1, PHRF1, BCLAF1). Some of these hub genes were either 
considered essential to the survival of AML cells (JMJD1C) or identified as fusion partners (CHD1) of the major 
player in hematologic malignancies (RUNX1). The hub genes of the blue module take part in immune response 
mechanisms (IRP1, RASL3, FMNL1) and comprised one critical regulator of lymphoid differentiation (IKZF1) 
that is frequently deleted or mutated in B-cell precursor ALL47. The cancer driver genes of ALL were enriched 
among the hub genes of the blue module (OR = 2.3 [1.5–3.7], FDR = 0.004).

Discussion
Our study integrated genomic knowledge in the network-based analysis of RNA-Seq data of six pediatric can-
cer types to provide a novel biological framework for investigating genes involved in childhood cancers. This 
comprehensive pan-cancer study relies on the robust definition of gene co-expression modules and their asso-
ciation with particular features of pediatric cancers. The observation of transcriptional profiles and biological 
functions connect modules to cancer-histotype specific, onco-hematologic and canonical oncogenic processes 
(Fig. 7). Topological analyses highlight that key regulators of these childhood cancer modules comprise major 
predisposition genes of pediatric tumors, as well as potential therapeutic targets. The pediatric cancer genes of a 
tumor type were significantly enriched in the tumor-associated module with strong histotype specificity. Genes 
targeted by precision therapies are over-represented in a limited number of childhood cancer modules, providing 
perspectives in the development of precision therapies for children.

As demonstrated for adult cancers, our approach enables investigating cancer genes and shows that mul-
tiple cancer types have exclusive hub genes. Adult pan-cancer analyses achieved interesting results in identi-
fying functional gene modules common to cancer, rather than modules specific to tumor types16. The present 
study identifies modules associated with childhood cancers having biological implications in developmental 
processes. Our findings support the close tie between organogenesis and tumorigenesis in childhood malig-
nancies. The pathogenesis of NBL is tightly related to disruption in noradrenergic neuronal development. The 
key regulators (PHOX2B, HAND2, PHOX2A, GATA2/3) of this developmental process are also the hub genes 
of the module found associated with NBL32,33. One of its key regulators, PHOX2B, is the major predisposition 

Figure 7.  Transcriptome-based approach to identify co-expression modules associated with pediatric 
tumors. Deep multi-layer inspection of the pediatric co-expression network indicates that the canonical 
oncogenic (tan) module significantly regroups the pediatric cancer genes altered by germline mutations, 
likely contributing to tumor initiation of multiple pediatric tumors. The tan module is functionally involved 
in cell cycle regulation and DNA repair and enriched in genes subject to targeted therapies. In pediatric acute 
leukemia, cancer predisposition genes are enriched in the pink and blue modules, whereas cancer driver genes 
are over-represented in the brown and grey60 modules. The module-tumor association tests and functional 
enrichment analyses highlight processes exclusively dysregulated in specific childhood tumor histotype. These 
six cancer-histotype specific modules are linked to biological functions overlapping with the physiopathology 
of the associated tumor histotype. We also highlight that hub genes within these cancer-histotype specific 
modules are known pediatric cancer predisposition genes (e.g. PHOX2B, PAX5). ALL, Acute Lymphoblastic 
Leukemia; AML, Acute Myeloid Leukemia; ANS, Autonomic Nervous System; MBL, Medulloblastoma; NBL, 
Neuroblastoma; SNS, Sympathetic Nervous System; WT, Wilms Tumor.
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gene to NBL31. Therefore, the other central genes of the magenta-NBL module constitute interesting candidates 
that should be further investigated in the study of the nervous system development and NBL. In support of our 
findings, ISL1 has been recently defined as a novel candidate gene for NBL and is also one of the hub gene of the 
magenta-NBL module32. The ALL tumorigenesis is the result of aberrant V(D)J recombinations at the origin of 
recombinase-mediated deregulated expression of a variety of proto-oncogenes. In the lightcyan-ALL module, the 
genes are involved in V(D)J recombination processes which is consistent with the physiopathology of ALL and 
includes, as one of its key regulators, a major predisposition gene for B-cell ALL (PAX5). The red-WT module 
is associated with the ontogeny of the kidney and one of its hub genes PAX2, is also believed to be a strong can-
didate gene for WT and is known as a key player in kidney cell differentiation34. Numerous genes co-expressed 
in the lightgreen-MBL module are related to embryonic brain ontogeny and to key transcriptional programs 
implicated in MBL pathogenesis37. The central regulator OTX2 of the lightgreen-MBL module is a candidate 
driver gene for MBL pathogenesis and is responsible for the regulation of cerebellar development and forebrain 
segregation27,37. One of the two modules associated with the AML subtype is related to myeloid-mediated immu-
nity processes. The cancer-histotype specific modules associated with NBL, ALL, WT and MBL are significantly 
enriched in pediatric cancer genes of the related histotype. Despite revealing modules with functional relevance 
for the majority of the tumor types, our analysis was not able to pinpoint a module specific to glioma. This is 
likely the result of the wide heterogeneity of this cancer type characterized by distinct subgroups, as shown in our 
t-SNE analysis. The hub genes of the cancer-histotype specific modules were enriched in known pediatric cancer 
genes. Many of these hub genes have still unknown functions or unrevealed implications in childhood cancers. 
Considering these converging levels of evidence, the hub genes of the cancer-histotype specific modules consti-
tute interesting candidates that should be investigated to validate their role in pediatric cancers, developmental 
processes, or both.

Our analysis further links modules to cancer-related pathways that are not specific of one pediatric tumor. 
Statistical analyses show enrichment of cancer genes frequently altered by pathogenic germline variants in the 
module related to cell cycle regulation and DNA repair, which is consistent with recent findings2,3. The genes 
co-expressed in this module are therefore likely early genetic determinants of childhood tumorigenesis. In acute 
leukemias, the cancer driver genes are over-represented in the brown module associated with common functions 
in epigenetic and post-transcriptional modifications. These processes are the most important somatically-altered 
pathways in childhood cancers and could be critical for tumor progression in hematologic malignancies3,4. The 
ALL driver genes are enriched in the lightcyan-ALL module related to V(D)J recombination and the grey60 mod-
ule linked to B cell activation and differentiation. This suggests that co-expressed genes and pathways in these 
modules (lightcyan, grey60) could contribute to B-cell ALL tumorigenesis. We could not assess the genomic alter-
ations for all the studied tumor types because of biases in documented literature. There was a lack of information 
regarding germline mutations in WT and the driver genes in glioma and MBL that prevented us to test them for 
enrichment analyses2,4.

Regarding over-representation of clinically actionable genes in key modules, our analyses give relevant infor-
mation about therapeutic targets. Across pediatric malignancies, the canonical oncogenic (tan) module shows a 
significant enrichment in drug-targetable genes. Most of the central regulators of the tan module are taking part 
in the regulation of the cell cycle. Currently, number of specific cell cycle inhibitors have emerged in the con-
text of pediatric-focused drug development48. Our results thus enable identifying candidate targets in cell-cycle 
therapeutics in childhood cancer. The majority of the hub genes of the grey60 module have key roles in innate 
immune recognition and activation and comprise Toll-like receptors (TLR1 and TLR6) that are potential ther-
apeutic targets in onco-hematology49. Hematopoietic malignancies promote unique immune evasion pathways 
and genes taking part in the innate immune system appear to be logical innate immune targets. The hub genes of 
the grey60 module constitute candidate targets that should be investigated for therapeutics in onco-hematology. 
Targetable genes involved in the VEGF pathway are enriched in the midnightblue module and include critical 
regulators such as VEGFR1 (known as FLT1) and VEGFR3 (known as FLT4) that are inhibited by VEGF-targeted 
approaches (sunitinib, sorafenib, axitinib, pazopanib, cabozantinib, nintedanib, lenvatinib). Further investiga-
tions of the genes co-expressed in this module is however needed to clarify their potential in the management of 
hematologic malignancies.

Pan-cancer analysis of metadata raises several issues related to batch effects that likely contribute to experi-
mental artifacts. In order to prevent such biases, RNA-Seq data available in the TCCI have been processed using 
the same pipeline of analysis. On these data, we additionally performed a normalization procedure taking into 
consideration the tumor type and the project associated to tumor samples. We have controlled the relevance of 
our normalization by checking similarity between TARGET and TREEHOUSE related subsets. As an example, 
one can note that MBL samples deriving from the TARGET project segregate with brain/nervous system tumor 
samples from the TREEHOUSE project, rather than the other TARGET samples (Fig. 2). We acknowledge that 
validating our results by reproducing the framework on comparative external dataset would reinforce the robust-
ness evaluation of the co-expression network. However, many of the consortia that focused on deciphering the 
genetic etiology of pediatric cancers by generating genomics data are still ongoing. TCCI is the only compen-
dium, to our knowledge, that gathers pediatric pan-cancer transcriptomic data for the six studied histotypes. As 
no data were available to perform a comparative study, we made a classical robustness validation to evaluate the 
reliability and stability of the co-expression network. Bootstrap-based methodologies and statistical tests were 
performed, as done previously in major co-expression studies13. Another point is related to interpretability of 
the modules. As modules can be interconnected, some genes may interact with many others and participate in 
different functions50. This could be seen as a limit, considering that genes involved in various malignancies have 
lower biological significance than expected, towards a particular tumor. As an example, WT1 gene is not among 
the top hub genes of the WT-module because of its involvement in different cancer types. We also questioned 
the tissue effect in our study, hypothesizing that the modules associated with pediatric tumor histotypes could be 
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more the reflect of the tissue origin of the tumor than independent molecular drivers. We performed additional 
analyses proving that pediatric cancer genes of one tumor type were over-represented in the tissue-specific genes 
matching the cell-of-origin of the tumor (Additional File 2: Fig. S3b). This is consistent with the cell-of-origin of 
a tumor that is likely to retain the embryological molecular networks that are critical to tissue specification and 
cancer etiology51. Our findings support that molecular drivers of the pediatric tumors cannot be considered as 
independent of the cell-of-origin of a tumor.

Conclusions
Our integrative approach provides to the clinical and scientific community a detailed characterization of the 
modules and genes highly associated with main pediatric tumors. Our findings provide a working frame for 
mechanistic investigations of the biological processes impaired in childhood cancers. Our results constitute a 
novel resource for cancer-related genes and potential therapeutic targets in childhood malignancies (Additional 
File 1: Table S2). We provide tumor-specific association metrics for 14,748 protein-coding genes that could con-
stitute novel criteria for future variant prioritization methodologies, while being extended to more childhood 
tumor types.

Methods
Pediatric pan-cancer gene expression data.  Pediatric pan-cancer RNA-Seq data were obtained from 
the Treehouse Childhood Cancer Initiative dataset (released July 2017) and downloaded from the UCSC Xena 
platform at https://xenabrowser.net/datapages/. RNA gene expression data were available for 11,074 samples 
and 60,498 transcripts together with associated clinical information (gender, age at diagnosis and tumor type). 
We selected only cases with an age at diagnosis equal to or less than 18 years old to fit our problematic and 
cancer types that were represented by at least 50 cases for enough statistical power. The AML, ALL, NBL, and 
WT samples data were recovered from the TARGET project and supplemented by the MBL and glioma samples 
from TREEHOUSE. Expected counts were annotated using the human genome (GRCh38.p3) version 23 with 
Ensembl gene IDs. We focused on transcripts with consistent annotations, i.e. protein-coding genes, with more 
than 10 reads in overall samples. Read counts were normalized using the variance-stabilizing transformation of 
the DESeq. 2 R v.16.1 package52 based on tumor type and project variables (TARGET, TREEHOUSE). The result-
ing transcriptome dataset consisted of 14,748 gene expression measurements for 820 pediatric tumor samples, see 
Extended Experimental Procedures for data pre-processing (Additional File 3).

Spatial distribution and cluster analysis of pediatric tumor samples.  We employed the t-SNE tech-
nique to investigate and visualize the transcriptome dataset in a low-dimensional space (2D-map)53. To apply 
t-SNE on more than thousand input objects, we used a variant of the Barnes-Hut algorithm. We ran 2,000 times 
the Barnes-Hut t-SNE and set the theta parameter to 0 to lower the Kullback-Leibler divergence (Rtsne R library 
v.0.13). The resulting coordinates were used for hierarchical clustering analysis (hclust R stats v.3.4.4) and clusters 
were defined using the cutree function of the R stats library.

Weighted gene co-expression network analysis.  We constructed a co-expression network using the 
WGCNA method developed by Langfelder and Horvath (WGCNA R library v.1.63)54,55. We used the blockwise-
Modules function to construct a signed co-expression network with sized modules ranging from 30 to 8,000 
genes and set the power adjacency function to 14 and the mergeCutHeight to 0.25, see Extended Experimental 
Procedures for details (Additional File 3). To analyze large dataset with more than 5,000 probes, the function 
blockwiseModules split automatically the dataset into two blocks. Briefly, we used a pairwise Pearson correlation 
to calculate a similarity matrix and applied a soft power adjacency function with ß = 14, to best fit the scale-free 
topology criterion as recommended by the authors. This adjacency matrix represents the connection between 
gene pairs measured by their similarity of expression levels across pediatric cancer samples. We then constructed 
a Topological Overlap Matrix (TOM) that was determined by the strength of the shared connection between 
the gene pairs and their neighbors54. In the network like structure, each node represents a gene and each edge 
between two nodes reflects the connection between genes. The intra-modular connectivity is measured by the 
sum of the connectivity of one gene with the other genes of one module. The 25% most highly inter-connected 
genes of one module were defined as the hub genes. A hierarchical dendrogram was constructed based on the 
TOM matrix and clusters were defined by using a cut height approach implemented in the blockwiseModules 
function to define modules of genes. The grey module gathered all non-assigned genes and was discarded from 
statistical analyses. The Module Eigengene (ME) was defined as the first principal component of a given module 
and considered as a representative of the module expression profile. The Module Membership (MM) of a gene 
was defined as the correlation between its expression profile and the ME of a module. We tested the difference 
in the mean expression levels of a gene between one tumor type vs all the other types by performing Wilcoxon 
Rank-Sum tests (wilcox.test R stats v.3.4.4). P-values were adjusted with a Bonferroni correction according to the 
number of genes and tumor types tested (p = 5.65 × 10−7). The gene significance (GS) was measured as minus 
log10 of the adjusted p-value and reflected the association of gene with a tumor type.

Robustness of co-expression network construction.  To evaluate the stability and reliability of the 
co-expression network, we assessed if the modules were composed of genes more strongly correlated than by 
chance13. We randomly selected gene sets matching the size of the observed module and compared the sum of 
gene correlations in the null module with the one observed over 10,000 iterations. The statistical probabilities 
were defined as the rank of the observed module among null module out of the total iterations. Significance 
was considered after Bonferroni correction according to the number of modules tested (p < 2.17 × 10−3). We 
used a bootstrap-based method to evaluate the module structure vulnerability to perturbations. Networks were 
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reconstructed 100 times with the same parameters on a random selection of the initial samples. The robustness 
was measured as the number of times a gene was assigned to the observed module over iterations.

Relationships between pediatric cancers and co-expression modules.  We performed a LDA 
approach (lda function MASS R package v.7.3–50) to segregate pediatric cancer types based on the average 
expression profiles of each module. The module contribution to the in-between-class variability of a pediatric 
tumor was defined as the mean expression of the module across samples of one tumor. We obtained a matrix with 
tumor types in rows and modules in columns with each cell corresponding to this mean expression. To identify 
strong module-tumor relationships, we defined an empirical threshold of 0.06 of the absolute value of the mean 
expression. Mean values were visualized through clustered heatmaps (pheatmap R library v.1.0.10).

Biological pathway characterization of childhood cancer co-expression modules.  We performed 
a functional enrichment analysis using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) with enrichGO and enrichKEGG functions (clusterProfiler R library v.3.4.4). For each module, the 100 
genes with the highest MM were used as input and the initial 14,748 genes as the background set. For the sake of 
accuracy, we used entrez ids as input and set up the significance thresholds to 0.01 for FDR adjustment method56.

Reference childhood cancer gene, genomic alteration, druggable and tissue-specific gene 
sets.  The pediatric cancer genes (pedCGs) were collated from the PediCan database29. Based on the pub-
lished study of Zhang and colleagues2, we selected all the germline variants reported in autosomal dominant and 
recessive cancer genes to establish pediatric predisposition genes (pedCPGs) for each pediatric tumor. All the 
alterations in autosomal dominant cancer genes were displayed across modules by using the oncoPrint function 
(ComplexHeatmap R library v.1.14.0). We used the list of pediatric cancer driver genes (pedCDGs) identified by 
Ma and colleagues4 and selected only the significantly mutated ones for each pediatric tumor type (MutSigCV, 
p < 0.01 or GRIN, p < 0.01). Potentially druggable genes (PDGs) consisted of the ones known to have a direct 
or indirect targeted treatment available or under development57. The detailed methodology is available in the 
Extended Experimental Procedures (Additional File 3). The tissue-specific genes were defined from the GTEx 
transcriptome data v1.1.9 (https://www.gtexportal.org/home/datasets) of normal tissue samples. The teGeneRe-
trieval function (TissueEnrich R library v1.5.1)58 was used to identify tissue-specific genes based on the median 
gene-level TPM by tissue.

Statistical enrichment analysis and visualization.  Gene set enrichment analyses were performed 
using a two-sided Fisher’s Exact test with an alpha level of 0.05 to assess the relationship between the genes of a 
list and a module. This analysis determines whether the fraction of genes of interest in the module is higher com-
pared to the fraction of genes outside the module (i.e., background set). The statistical probabilities were reported 
as the FDR adjusted p-values to reduce the likelihood of false positives58. All the enrichments with OR >1 passing 
FDR < 0.05 were considered as significant in the analysis. To visualize relevant genes in the network, we selected 
the top 15 hub genes and pediatric cancer genes within a module (igraph R library v.1.2). The edges between pairs 
of the input genes were calculated based on the TOM and represent the strength of their shared connections. The 
over-representation of pediatric cancer genes in tissue-specific gene sets was displayed using the corrplot function 
(corrplot R library v0.84).

Data availability
Publicly available data analyzed in our study were acquired from the Treehouse Childhood Cancer Initiative 
dataset on the UCSC Xena Platform at https://xenabrowser.net/datapages/ (Treehouse public expression dataset, 
July 2017).
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