Skip to Main content Skip to Navigation
Conference papers

Comparison of machine learning algorithms and oversampling techniques for urinary toxicity prediction after prostate cancer radiotherapy

Abstract : Prostate cancer radiotherapy unavoidably involves the irradiation not only of the target volume, but also of healthy organs-at-risk, neighboring the prostate, likely causing adverse, toxicity-related side-effects. Specifically, in the case of urinary toxicity, these side effects might be associated with a variety of dosimetric, clinical and genetic factors, making its prediction particularly challenging. Given the inconsistency of available data concerning radiation-induced toxicity, it is crucial to develop robust models with superior predictive performance in order to perform tailored treatments. Machine Learning techniques emerge as appealing in this context, nevertheless without any consensus on the best algorithms to be used. This work proposes a comparison of several machine-learning strategies together with different minority class oversampling techniques for prediction of urinary toxicity following prostate cancer radiotherapy using dosimetric and clinical data. The performance of these classifiers was evaluated on the original dataset and using four different synthetic oversampling techniques. The area under the ROC curve (AUC) and the F-measure were employed to evaluate their performance. Results suggest that, regardless of the technique, oversampling always increases the prediction performance of the models (p=0.004). Overall, oversampling with Synthetic Minority Oversampling Technique (SMOTE) followed by Edited Nearest Neighbour algorithm (ENN) together with Regularized Discriminant Analysis (RDA) classifier provide the best performance (AUC=0.71). © 2019 IEEE.
Document type :
Conference papers
Complete list of metadatas

https://hal-univ-rennes1.archives-ouvertes.fr/hal-02472484
Contributor : Laurent Jonchère <>
Submitted on : Monday, February 10, 2020 - 11:42:34 AM
Last modification on : Wednesday, June 10, 2020 - 2:06:52 PM

Identifiers

Collections

Citation

E. Mylona, C. Lebreton, P. Fontaine, S. Supiot, N. Magne, et al.. Comparison of machine learning algorithms and oversampling techniques for urinary toxicity prediction after prostate cancer radiotherapy. 19th International Conference on Bioinformatics and Bioengineering, BIBE 2019, Oct 2019, Athens, Greece. pp.964-971, ⟨10.1109/BIBE.2019.00180⟩. ⟨hal-02472484⟩

Share

Metrics

Record views

80