Inferring effective connectivity using robust low-rank canonical polyadic decomposition Application to epileptic intracerebral EEG signals - Archive ouverte HAL Access content directly
Conference Papers Year : 2019

Inferring effective connectivity using robust low-rank canonical polyadic decomposition Application to epileptic intracerebral EEG signals

(1) , (1) , (2) , (1)
1
2

Abstract

This paper addresses the estimation of effective connectivity in epileptic brain networks. To this end, a constrained Canonical Polyadic Decomposition (CPD) of a Partial Directed Coherence tensor issued from a modeling of the observed data is investigated. The efficiency of the proposed approach is confirmed in the context of epileptic intracerebral electroencephalographic (iEEG) signals. © 2019 IEEE.
Not file

Dates and versions

hal-02472488 , version 1 (10-02-2020)

Identifiers

Cite

P.-A. Chantal, Ahmad Karfoul, A. Pasnicu, R. Le Bouquin Jeannès. Inferring effective connectivity using robust low-rank canonical polyadic decomposition Application to epileptic intracerebral EEG signals. 5th International Conference on Advances in Biomedical Engineering, ICABME 2019, Oct 2019, Tripoli, Lebanon. pp.8940164, ⟨10.1109/ICABME47164.2019.8940164⟩. ⟨hal-02472488⟩
31 View
0 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More