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Abstract

Csand G unsaturated alcohols are a family of biogenic tMel@rganic compounds (BVOC)
emitted in the atmosphere from vegetation in respao their injuries. In this work, we
report the first temperature dependent rate cotsstan the reaction of three unsaturated
alcohols: 1-penten-3-ol (1P30L), cis-2-penten-1(@2P10L) and tran-3-hexen-1-ol (t-
3H10L) with ozone in a pyrex reactor coupled toTdRFspectrometer and to a GC/MS at
four different temperatures (273, 298, 313 and B33at atmospheric pressure, using a
relative method. The Arrhenius expressions obtaaredcnimoleculé*s™):

1-Penten-3-ol : K 1p30L+03= (1.82 + 2.08) x 16° exp (— (730 + 348) / T)
Cis—2—penten-1—o| : K c-op10L+03= (232 t 194) X 165 exp (— (902 t 265) / T)
Trans-3-hexen-1-ol :  Kianiorso3= (1.74 + 1.65) x 1&° exp (- (1020+ 300) / T)

The studied reactions were also explored theotbtioging computational methods based
on quantum chemical theory characterizing the inégliates, transition states and the
subsequent formation of reaction products. The catestants were calculated at room
temperature employing a modified transition-stateoty (MTST). Both results obtained
experimentally and theoretically, were discussed terms of structure-reactivity
relationships and temperature dependence. Tropospifietimes of the investigated species
with respect to ozone are calculated. The obtareedlts showed that these species are not
persistent towards ozonolysis process.

Keywords. biogenic volatile organic compounds (BVOC); unsatied alcohols;

ozonolysis; rate constants; DFT method, troposphigetimes
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1. Introduction

Unsaturated alcohols are a category of oxygen8¢@Cs with an atmospheric
concentration of the order of few ppbv, particyats and G unsaturated alcohols. Most
plants are affected by this type of emission causgedheir wounds (Davis et al., 2007,
Grosjean et al., 1993, Grosjean and Grosjean, 198%t al., 2016). Hexenol and related
compounds give the green leaf odor when the lavmown or when the leaves begin to rot.
Hexenol can as well protect injured plants fromhpgenic attack (Fuentes et al., 2000).
Moreover, several £oxygenated compounds derived frentinoleic acid can be emitted
from vegetation for microbiological protection pogges. These compounds include 1-
penten-3-ol and 2-penten-1-ol, emitted by variolamts (Davis et al., 2007; Fisher et al.,
2003; Heiden et al., 2003; Karl et al., 2001; Kirstet al., 1998). The emission of these
compounds by a wide variety of vegetation suggtsis they are a significant source of
BVOCs in the atmosphere. It is therefore importarquantify their emission rate as well as
their atmospheric reactivity in order to evaludteitt contribution to the formation of other

atmospheric oxidants.

In the atmosphere, in the gas phase, these uasaduwxygenated BVOCs are likely to
be removed by reactions with atmospheric oxida®id,(G;, Cl and NQ). Dry and wet
deposition pathways may also be considered. Thisesaheric transformations generate
secondary pollutants namely photolabile carbonyhpgounds, secondary organic aerosols
(SOA) and ozone production at regional and contalescales (Coates and Butler, 2015;
Jenkin and Hayman, 1999).

The atmospheric oxidation of unsaturated alcobgl©H radicals has been relatively
well studied (Davis and Burkholder, 2011; Gibiliseb al., 2013; Le Calvé et al., 2000;
Mellouki et al., 2003; Orlando et al., 2001; Papagmal., 2009). However, studies of the
atmospheric degradation of unsaturated alcohofS;*by ozone are scarce or non-existent,
especially those depending on temperature. To tatestudies concerning the ozonolysis
of a G unsaturated linear alcohol, trans-3-hexen-1-adtdri the literature and only at room
temperature (Gibilisco et al., 2015a; Lin et aD1@). Gibilisco et al., (2015a) performed
their study in a 480L environmental chamber cougledh FTIR spectrometer using the
relative method, while Lin et al., (2016) carriedt dheir experiments in a 150L teflon
chamber coupled to GC/FID using the absolute mbttaeover, the reactivity of two £C
unsaturated alcohols, cis-2-penten-1-ol and 1-peBtel, with ozone was studied by
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Grosjean and Grosjean, (1994) and by O’Dwyer et(2010) at room temperature and at
atmospheric pressure, in the absolute mode usitig &1d GC/MS.

To complete the above studies and enrich the ikinketabases, we chose to evaluate
the rate constants of the ozonolysis of three ungtgd alcohols (1-penten-3-ol (1P30L),
cis-2-penten-1-ol (c-2P10L) and trans-3-hexen-{+@H1O0L) over the temperature range
of 273 to 333 K, at atmospheric pressure, in thesgmce of cyclohexane as an OH
scavenger, using the relative method. This studg performed in a 63L pyrex reactor
coupled to a FTIR spectrometer and to a GC/MS.HEokest of our knowledge, this work
provides the first temperature-dependent kinetichstfor the ozonolysis of 1-Penten-3-ol,

Cis-2-penten-1-ol, and Trans-3-hexen-1-ol.

The reactions of the unsaturated alcohols withhnezand the reaction sequence has
been also explored theoretically for the first tjmmsing computational methods based on
quantum chemical theory characterizing the inteiated, transition states and the

subsequent formation of reaction products. Theistugtactions are:

O + 1P30Ll— products kesoL+o3 (1)
O; + ¢c-2P10L— products KopioL+03 (2
O3 + t-3H1O0L— products KsH10L+03 3

2. Experimental section
2.1. Experimental set-up

Kinetic measurements of the reactions of ozoné WR30L, c-2P10L and t-3H10L
were carried out in a 63 L tube, at four differegrhperatures: 273, 298, 313 and 333 K, at
atmospheric pressure, using a relative method. @bigce was described in detail in
previous studies from our laboratory and only @fdiscussion will be given (Al Rashidi et
al., 2014, Kalalian et al., 2017; Laversin et 2016; Messaadia et al., 2013). In short, it is a
triple jacket Pyrex cell 200 cm long with an intakdiameter of 20 cm, inside which there
are gold-coated mirrors to vary the optical pathe Dptical path used in this work was 56
m. A circulation of fluid (water or ethanol) betwethe first and the second jacket allows
working in a wide temperature range (233-373K). pressure can vary between few mTorr

to 1000 Torr. This cell is coupled to a FTIR spewcteter (Bruker Equinox 55) operating in
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the spectral range of 4000 to 400 tmith a spectral resolution between 0.5 and 2 &=
well as to a GC/MS.

Ozone was generated using an ozonizer. The ozenerafor consists of a double-
walled pyrex cylinder placed between two coppecteteles, connected to a KIKUSUI-
PCCR 500LE high frequency generator, having a siphlase output with a nominal
capacity of 500 VA. Ozone was produced by dissmriabf oxygen flowing between the
two electrodes. The ozone-oxygen mixture was dilumgth dry air at the exit of the
ozonizer and directed to a cylindrical Pyrex cé&lcin in length, designed to measure in the
UV and thus control the amount of ozone introdudetd the reactor tube. In our
experiments, ozone concentration was measuredatrdusing an Avaspec CCD camera.

The studied alcohols and the references used w#neduced into the reactor at
concentrations of (0.40- 1.00) x *2Omolecules cii. Cyclohexane, scavenger of OH
radicals likely to form in the reactor, was addedcancentrations of (10-50) x 10
molecules cif. Once in the reactor, the ozone was then intradlwith a continuous flow
of 0.1 mL/ min (corresponding to a concentratiorttef order of 18 molecules crii). The
used reference compounds were: 2,3-dimethyl-1,8dbeme for the FTIR measurements
and 1-heptene or 1-penten-3-ol for the GC/MS measants (example given Figure S-

1).

For the FTIR measurements, IR spectra were redomlery 45 seconds. Each
spectrum is an accumulation of 30 spectra. The rarpat lasts about one to three hours.
The IR bands specific to each of the compoundsiesiudere integrated so there was no
overlap with the reference band and those of theti@n products formed. The integrated
bands were: 930 - 950 ¢hfor 1P30L, 920 - 960 cthfor c-2P10L, 939 - 987 cirfor t-
3H10L and 1574 - 1631 chior the reference 2,3-dimethyl-1,3-butadiene.

In the case of the coupling with the GC/MS, an & fer type polydimethylsiloxane
(PDMS) was used for sampling. This fiber was exdose 1 minute into the reactor. A
sampling time of 1 minute seemed to be a good comige between the characteristic time
of kinetics and the thermodynamic equilibrium. Séspwere taken every 10 min
throughout the duration of the experiment.

The studied compounds were provided by Sigma élidrl-penten-3-ol (> 98 %), cis-
2-penten-1-ol% 96 %), trans-3-hexen-1-ol (97 %), cyclohexan®9 %), 2,3-dimethyl-1,3-
butadiene (98 %), 1-heptene (97 %) and were us#tbuti further purification. As for the
gases, they were provided by Air Liquide: Air (>.9999 %), Q (> 99.999 %), He (>
99.999 %).
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2.2. Experimental data analysis
The compound and the reference are simultanesusigcted to ozonolysis, their wall
loss effect and other pseudo first-order reactidime set of reactions that take place in the

reactor are:

Alcohol + G; - Products kos (I)
Alcohol = Products ko (1)

—d[Alcohol]

———— = kos [Alcohol],[05], + kp[Alcohol], (Eq.1)
Reference + @-> Products ket  (1V)
Reference> Products Ko (V)

—d|[R
[ ej:;rence] = kges [Reference],[03], + k'p[Reference], (Eq.2)

[Alcohol]y and [Referencglare the alcohol and the reference concentrati@ng, is
the gas phase ozone concentratig@nkl k', are the sum of first order or pseudo first order
rate constants due to wall losses as well as sacpmdactions for the studied alcohols and
the reference compound.

Integration of Eqs 1 and 2 leads to the followialgtion:

(Eq.3)

n
t

1 [Alcohol], R 1 i [Reference],
<[Alcohol]t> <

— n —
t [Reference];

> + (kp — RK'p)

where R = k3 / keer, kozand kerare the second order rate constants® (eroleculé* s?) of
the alcohol and the reference with ozone, [Alcohaljd [Referencg]are the alcohol and
the reference initial concentrations at the initiale § and [Alcohol] and [Referencepre
that at reaction time t.

Since the unsaturated alcohols concentrationgpmgortional to the areas of the IR
band or chromatographic peak, the plot of 1/t Ig {fAac) as a function of 1/t In (e
IAe) is a straight line whose slope corresponds tadtie R = ks / Kier, With Ag ac and A

ref COrresponding to the areas of the alcohol anddfexzance bands at timgdnd Aycand

5
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At are that at time t. Multiplying this ratio by thate constant of the known referencg;, k
we can determine the second-order rate constartteeadzonolysis of the studied alcohols
kos (in cn® moleculé' s*). The ozonolysis reaction of the studied alcolesse repeated 3-
4 times for each temperature (273, 298, 313 an&B33

3. Computational method

All the electronic structure calculations wereregh out at an IBM Cluster using
Gaussian 09 suite of programs (Frisch et al., 200B¢ geometry optimization of all the
species involved in the reactions considered, thtermediates and their subsequent
degradation products was carried out at DFT methsthg M06-2X functional in
conjunction with the triple split valence polarizédsis set 6-311++G(d,p) with diffuse
functions added to heavy atoms. M06-2X functiorsaki meta hybrid density functional
which incorporates 54% of HF exchange and proptsgteld reliable thermochemical and
kinetic parameters involving main group element&mvhoupled with a suitably large basis
set (Zhao and Truhlar, 2006, 2008). Computatioharmonic vibrational frequencies was
made on the same level of theory to verify the reatd the corresponding stationary points.
All the stable species were classified as minimattmn corresponding potential energy
surface (PES). These stable species were chaescidyy the presence of all real vibrational
frequencies. The transitions states were located, their existence was verified by the
presence of only one imaginary frequency along tiamsition vector. The frequency
calculations led to determine the electronic enarfiyhe species concerned. Zero-point
vibrational energy (ZPVE) of the respective specis also calculated at M06-2X/6-
311++G(d,p) level and corrected by employing a exiron factor of 0.95 (James et al.,
2011). In order to ascertain the occurrence of tifamsition state, Intrinsic Reaction
Coordinate (IRC) (Gonzalez and Schlegel, 1989)utalons in both directions (forward
and reverse) were made in order to see that timsiti@n was smooth from reactants to
products via the transition state. IRC calculatiomsre performed at the MO06-2X/6-
311++G(d,p) level of theory using 12 points eachiarward and reverse directions at 0.1

amu’-Bohr step size.
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4. Results and Discussion

4.1. Determination of the rate constants experimentally

Rate constants of the reaction of ozone with 1R3©RPP10OL and t-3H1OL were
determined in the temperature range of 273 to 33atkatmospheric pressure, using the
relative methodFigs. 1-3 show the plots of 1/t In (AudAac) as a function of 1/t In (A
e/ Aref) fOr the three unsaturated alcohols at differemgeratures (273, 298, 313, 333K)
obtained by FTIR (reference: 2,3-dimethyl-1,3-bigad) and only at 298 K by SPME-
GC/MS (reference: 1-heptene). Good linearity iseobsd with correlation coefficients?|r
greater than 90% in accordance wéit). (3).

Ozonolysis rate constants,ok obtained experimentally by the two analytical
techniques FTIR and SPME-GC/MS, are presentécalsie 1. The overall uncertainties on
the second-order rate constantss, kare calculated from the error propagation metabd
each temperature. The uncertainty is 14 to 18%lfpenten-3-ol, 13 to 14% for cis-2-
penten-1-ol and 15% for trans-3-hexen-1-ol.

In order to establish the Arrhenius relationshipkos is plotted as a function of 1 /T
for the three studied unsaturated alcohblg.(4). The Arrhenius parameters can be deduced
from the slope and the intercept. In the tempeeattange 273-333K, the Arrhenius

expressions of the studied unsaturated alcohold fuoteculé' s) are:

1-Penten-3-ol : k 1psoLoz= (1.82 + 2.08) x 18° exp (- (730 + 348) / T)
Cis-2-penten-1-ol :  Kcapiors03= (2.32 + 1.94) x 1 exp (- (902 + 265) / T)
Trans-3-hexen-1-ol :  Kisniors03= (1.74 + 1.65) x 18 exp (- (1020+ 300) / T)

Uncertainties on the Arrhenius parameters (actvaéinergy Eand pre-exponential factor

A) were calculated using the weighted least squarethod.
4.2. Error analysis on experimental determinations

The overall error on the rate constants repomethis work arises from: (i) Random
errors caused by unknown and unpredictable changegs experiment that occur mainly in
the measuring instruments. These errors are reduwgcederaging several experiments and
their contribution is lower than that of systemagitors. (ii) Systematic errors are due to
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methodological, instrumental and personal errarshis work, errors on the ozonolysis rate
constants of unsaturated alcohols were determisgd the error propagation:

1/2

e, [262)\
Akos = kos X (k—ff) | el (Eq. 4)
kref

WhereA Kret / ket aNd A (Koz / krer) / (Kod/ krer) are the relative errors onekand koz / Kret,

respectively. The errors sources come mainly from:

« The error on ks this value is given by the literature; it varigsem 5 to 20%
depending on the used reference.

e The error on the determination of the ratigs K ket This parameter represents the
slope of the plot 1/t In [alcohelJalcohol] vs 1/t In [ref} / [ref] determined directly
from the experimental points. The error on thisapagter is mainly influenced by the
analytical technique used to track reagent conatofis. The uncertainty on the
slope kik.s for the IR measurements mainly depends on errelested to the
integration of the spectroscopic peak areas ofaim@&yte and the reference. To
minimize this error, 30 to 70 spectra were colldci different time intervals for
each experiment. For SPME-GC/MS measurements xiherienental conditions are
optimized such as the column temperature, the SRME type, the exposure time
in the reactor and the selection of the referemrepound to have relatively intense
chromatographic peaks. In addition, for each expeni, 3 to 4 runs were performed
to minimize the error on the determination of thape (ka/kre). The uncertainty on
this parameter was calculated by the least squarettod.

4.3. Electronic structure

It is a well-established fact that reactions oforez with alkenes occur by the
cycloaddition of ozone to the C=C double bond (Rad Gejji, 2018, 2017a). A very high
level calculation performed on ozone addition & $simplest alkene £, concluded that
Criegee mechanism is more pertinent as compar&et®¥oore mechanism (Gadzhiev et
al., 2012). As a result, we followed the kinetidstlee reactions of the three unsaturated
alcohols with ozone to the formation of the primaonide (POZ). Theoretical studies
performed on ozonolysis of alkenes such as ethewkeisoprene have shown that the
activation energies for such reactions proceeds megative activation barrier (Olzmann et
al., 1997; Zhang and Zhang, 2002). This implieg thyeloaddition of ozone is likely to

8
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occur through a Van der Waals complex prior to thensition state. Therefore, the
possibility of involvement of pre-reactive complexén the entrance channel of the
corresponding potential energy surface was coreider this work and the reaction under

the following reaction sequence was explored.

1P30L (A), c-2P10L (B) or t-3H10L (C) + ©O > [Complex, RC]> TS - Primary
Ozonide (PO2)

The optimized geometries of all the species inedlin the reactions of A, B and C
with ozone are shown iRig. 5. A few vital geometric parameters that are expbttebe
more critical during the reaction process are htted on the figure. The detailed positional
coordinates of the atoms in the optimized geonwtoé the species involved during
reactions are given thBupplementary Material (Table S1). A detailed analysis of the
optimized structures of the complexes reveal thattvo interacting C----O bond of the
complex were found to be in the range of 2.750932A. Such a long distance shows that
the complexes are indeed a weak complex of thedéawWaals type.

The transition states possessed only one imaghmanyonic vibrational frequency as
2801, 219i and 248 for transition states TS TSz and TS respectively Supplementary
Material -Table S2) and can be classified as the first-order saddi@tpdhe energy
profiles of the reactions of A, B and C with ozcare made with the zero-point corrected
energy values obtained during frequency calculatiod these are shown Kig. 6. The
computed energy values of the species concerned) alith their zero-point energies are
given in Supplementary Material (Table S2). In constructing the profiles, the energy
values are presented with respect to the reactalgicoies set to zero. The results show that
the calculated energy difference between the tiansstates and the reactants in reactions
of O; with A, B and C are 0.16, -3.72 and -2.65 kcal/mespectively. Thus, we find that
the cycloaddition of ozone on the species A is atmathout barrier whereas on B and C it
proceeds with a negative barrier. It is known theactions occurring with negative
activation barrier proceeds with the formation oé-peactive complexes (Li et al., 2015;
Olzmann et al., 1997; Rao and Gejji, 2017a, 20Xib; et al., 2015; Zhang and Zhang,
2002). A rigorous search for stable minima in therance channel of the respective
potential energy surface was therefore performading the search on a relaxed PES the
stable minima Rg RG and RGE corresponding to each reaction were found whose
optimized geometries are also showrFig. 5. The energy profiles plotted ifg. 6 show

that the pre-reaction complexes are stabilizedrbgreergy of the amount of 3.72, 5.09 and

9
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5.25 kcal/mol with respect to the correspondingtiag species in reactions with A, B and
C, respectively. In order to confirm that the reaws proceeded through a pre-reactive
complex, the IRC calculations performed at M06-2%18.++G(d,p) level of theory along
the reaction path in both the directions of thengrdon state as shown iRig. 7 were
analyzed. The analysis showed that the reactantistked represented the vdwW and the
transition from vdW to the primary ozonides was stho

4.4. Thermochemical analysis and Rate Constants

The reaction energies involved during the reactbrozone with A, B and C are
calculated. The results show that the formatioprahary ozonides are highly exothermic
(AH%gs : A + O; = -74.76; B + Q = -76.56 and C + ©= -72.84 kcal/mol and highly
exogeric with the respectivAG s values of -61.08, -61.29 and -59.27 kcal/mol).sThi
shows that the formation of primary ozonide is spoaous and the most probable one.

The entrance channel of the potential energy serfRES) is attractive and this leads
to the formation of weak Van der Waals complexes riactions of ozone with titled
alcohols. The reaction under such a circumstancarsavith a negative activation barrier.
The reaction complex further proceeds to form prinezonide through the transition state.
During the present study a modified transition estdteory (MTST)was employed to
calculate the rate constants of the reactions dermil (Krasnoperov et al., 2006). It is
assumed that the reactions with negative energyebaroceed in two steps. In the first
step, reactants form a complex, which is in micnecacal equilibrium with the reactant
molecules at all energy levels and the reactiomigcwith the following sequence:

R; + R ~ [Reactive Complex, RC}- TS - POZ

In the above reaction sequence,ifRA, B or C and Ris Gs. In the second step, the
reaction complex decomposes to yield the reactimdycts and this step is the rate
controlling step. Thus, the overall rate of the bliecular reaction can be written as

Rate = Igc [RC] (Eq.5)

Where k¢ is the unimolecular rate of decomposition of thaction R Products and is

given by the equation:

(ETs —ERre)
kRC = F(T) (0} M % e TSRT i (Eq 6)
h  Qrc

10
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In the above equatiom,(T) is the tunneling correction factor at a tempama T, 0 is the
reaction path degeneracy, ks Boltzmann's constant, T is temperature, h i@nél's
constant, @ and (¢ are the molecular partition functions of the tiaos-state and the
reaction complex respectively, {&- Erc) is the energy barrier between the transitionestat
and the reaction complex and R is the universatgastant.

The unimolecular rate constantzckcan be calculated theoretically utilizing the
guantum chemical methods by computing the partitiorctions of the transition state and
the pre-reactive complex and the activation barBgg — Ezc. Since the pre-reactive
complex RC is statistically in equilibrium with tleacting species at all energy levels, the
equilibrium concentration of the complex, RC can daculated utilizing the statistical

mechanical theory and can be written as

[RC] = 52— [Ry][R;] (Eq.7)

Where @1, Qr2 and ¢ are the molecular partition functions of the reagspecies and the
complex. Thus, the rate of bimolecular reaction loanvritten as:

Rate = ke [RC] = ke g—o— [R][R,] (Eq.8)

Qrc

Qr1-Qr2
degeneracy is generally taken to be unity for the unimoleculeactions. The tunneling

Hence, the effective bimolecular rate constantivergby kc . The reaction path

correction factof (T) has been estimated using Wigner's method (Wigh@32) and this
has been found to be very close to unity in eaclthefreactions considered during the
present study. Thus, concluded that tunneling isigmficant during the reactions
considered. The calculated bimolecular rate cotstainthe reactions considered during the
present investigation come out to be : (A) % 0.2 x 10" cm® moleculé' s*; (B) + O,
1.48 x 10" cn® moleculé' s*; (C) + O; 1.5 x 10" cm?® moleculé® s* having apparent
activation energies of 3.88, 1.37 and 2.60 kcal/mspectively. Although the computed
activation energy of the reaction 1P30L #i®higher than the experimental one, the values
for the other two reactions considered during ttes@nt study are quite comparable with the
experimentally determined valu€Bable 3). As a result, the rate constants evaluated using
quantum mechanical method for reactions of ozorle ¥#30L, c-2P10L and t-3H1O0L are
on the average 6-7 times lower than that of theeexental valuesTable 1). Moreover,
these calculations have highlighted the formatiba pre-reaction complex that leads to an
activated complex.
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4.5. Comparison with theliterature

Experimental rate constants for the reaction anezwith 1P30L, c-2P10L and t-
3H1O0L, determined in this work were compared withse found in the literature at room
temperatureTable 1). The average room temperature rate constantsneddtan FTIR and
GC/MS are (x10” cm®moleculé's™): (1.68 + 0.32) for 1P30L, (10.50 + 1.99) for c1ZPL
and (6.24+ 1.37) for t-3H1OL. Grosjean and Grosj€af94) studied the kinetics of
ozonolysis of 1P30L and c-2P10L using the absaté¢hod and reported an ozonolysis
rate constant of (1.79 + 0.18) x10cmmoleculé’s* for 1P30L and (16.90 + 2.49) x10
cm® moleculé's™ for c-2P10L at room temperature. More recentlyD@er et al., (2010)
used the absolute method to determine an ozonalgisconstant of (1.64 + 0.15) x40
cm® moleculé's® for 1P30L and (11.50 + 0.66) x10cnmPmoleculé's™ for c-2P10L at
room temperature. For 1P30L, the obtained averageiemt rate constant is in a good
agreement with the available literature with a etéhce of about 6% with Grosjean and
Grosjean (1994) and 2% with O’Dwyer et al. (201B).the case of c-2P10L, ~38%
discrepancy is observed with Grosjean and Gros{@884). However, the rate constant
determined by O’'Dwyer et al. (2010) at room temperis in a very good agreement with
our average rate constant(~9%). Our determinatiwascloser to those of O'Dwyer et al.
(2010) and the observed difference lies in our ttagdies’domain.

Gibilisco et al., (2015b) determined an ozonolyaie constant of t-3H1OL of (5.83 +
0.86)x10" cm?® moleculé's™ at room temperature using the relative methodeiih et al.,
(2016) determined a rate constant of (6.19 + 052)0%" cm® moleculé's® at room
temperature using the absolute method. These twerndmations are in good agreement
with the average room temperature rate constaetmeted in this study with a difference

of about 7% and <1%, respectively.

As can be seen ihable 1, the Structure-Activity Relationship calculatiof®AR) for
the ozonolysis of 1P30L, c-2P10L and t-3H10L, amedi by McGillen et al. (2011), are in
a good agreement with the obtained experimenta cainstants. The calculated rate
coefficients were (18" cm® moleculé's?): 1.79 for 1P30L, 16.8 for c-2P10L and 6.38 for
c-3H1O0L.

4.6. Structure effect

Under atmospheric conditions (T = 298 K and P € 7®rr), the kinetics of the
ozonolysis of the three unsaturated alcohols appeadpe relatively sensitive to their

structure. Indeed, both experimental and theodetiwaks show that the reactivity of ;0
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with 1P30L is lower than that with c-2P10OL and t43pL (Table 1). Our results show that
the unsaturated alcohol whose double bond is mabstiguted (1P3OL) is less reactive
than the unsaturated alcohols with di-substitutefiroc bond (c-2P10L) and (t-3H1OL). In
addition, the comparison of the ozonolysis ratestamt of c-2P10L with that of t-3H10L
shows that the position of the OH-group impactsathenolysis kinetics.

In order to extract structure-reactivity trendse experimental rate constants of the
reaction of ozone with 1P30L, c-2P10L and t-3H1Oérevcompared with those of other
Cs-Cs unsaturated alcohols found in the literat(Fable 2). From this table the following
points emerge:

* The kinetics of ozonolysis are mainly influenced the substitution degree of the
double bond. It increases with the number of stiumstts. This finding is expected
since the ozonolysis reaction occurs by electraphiidition of ozone to the double
bond. As a result, the reactivity should increasth ihe number of hydroxyalkyl
substituents.

* In the case of mono-substituted unsaturated alsplnoth the exception of 3-methyl-
1-buten-3-ol, the nature of the hydroxy alkyl sitbent has no influence on the
ozonolysis kinetics.

* In the case of di-substituted,-Cs unsaturated alcohols, the presence of an -OH group
in the beta position seems to enhance the ratetazgnsiore than in the gamma
position where the OH group is further from the lleubond. So, 2-buten-1-ol and
cis-2-penten-1-ol with OH if-position are more reactive than trans-3-hexen-dnal
cis-3-hexen-1-ol with OH iny-position, with the exception of trans-2-hexen-1-ol
where its rate constant is of the same order df dharans 3-hexen-1-ol. The SAR
calculation obtained by McGillen et al. (2011) gisedicts a much faster rate constant
for c-2P10L than for t-3H1OL.

In order to evaluate the effect of the hydroxybupy (-OH) on the reactivity of
unsaturated organic compounds, the kinetic resalftgined in this study and previous
studies found in the literature are compared tee¢heported for their homologous alkenes
(Table 2). It is found that &Cs unsaturated alcohols with a mono-substituted C bo@d
are slightly more reactive than their homologousaés with the exception of 3-methyl-1-
buten-3-ol. This observation is unexpected bectheseresence of an hydroxyl group exerts
an attracting effect which can reduce the electraleinsity of the double bond deactivating

the ozone addition. However, the reactivity of Cs di-substituted alcohols is relatively
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lower than that of their homologous alkene with éxeeption of 2-buten-1-ol. This can be
explained by the attraction effect of the hydroggdup.

4.7. Temperature effect

Ozonolysis rate constants determined in this stltyw a low positive temperature
dependence. Taken into account uncertainties,aitiivenergy Efor the ozonolysis of the
three unsaturated alcohols are of the same orderaghitude. The position of the double
bond and the OH group do not have much impact snprameter. On the other hand, the
pre-exponential factor A is sensitive to the positof the double bond: the more the olefinic
bond is substituted, the higher A is.

The kinetic parameters {and A) determined in this work for unsaturatedhtis are
compared with those of their corresponding alkeBewxe the kinetic parameters,@d A)
are not available for trans-3-hexene, the homolsgidkene of t-3H10L, the comparison is
made with respect to trans-2-hexemelfle 3).

The ozonolysis activation energies of the unsétdralcohols are slightly lower than
those of their homologous alkenes, except for lgreB-ol, whose activation energy is
approximately two times lower. The pre-exponentadtors for unsaturated alcohols are
slightly lower than those of their homologous akken

4.8. Atmospheric implications

The experimental rate constants obtained in thoskwwere used to estimate the
tropospheric lifetime of 1P30L, c-2P10L and t-3H1€lative to ozone. To determine the
main chemical pathways for the atmospheric remowhfl these compounds, their
tropospheric lifetimes with respect to their reast with OH, NQ and CI radicals were
determined. Tropospheric lifetimes are calculatethgithe expressionx =1/k [X] where
[X] is the average concentration of OH, Cl, jl@nd Q, and k the reactions rate constants
with the oxidant X. The tropospheric lifetime vaduer the studied alcohols are summarized
in Table 4.

A daily average global tropospheric concentratiér24 h of 1x16 molecules ci
(Atkinson et al., 1995; Finlayson-Pitts and Pi2800) was used to calculate tropospheric
lifetime due to OH-reaction, an average concemmatf 13 molecules cii for ozone-
reaction(Finlayson-Pitts and Pitts, 2000; Vingarzan, 20@)x 10 for nitrate -reaction
(Calvert et al., 2000) and 46or chlorine atoms-reaction (Finlayson-Pitts aiittsP2000).
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According toTable 4, it can de deduced that unsaturated alcohols emg reactive
with respect to their reaction with OH, N@nd Q with tropospheric lifetimes of few
minutes (13-36 min) to few hours (2-17h). Thusjrtaetual lifetimes depend mainly on the
local chemical composition and the location of theinission sources. The calculated
lifetimes can provide an order of magnitude of thewameter and get an idea of their
atmospheric persistence.

5. Conclusion

The first temperature dependent rate constantthéreaction of the three unsaturated
alcohols (1-penten-3-ol, cis-2-penten-1-ol and dr@rhexen-1-ol) with ozone Owere
determined using the relative method, in a pyrexte coupled to a FTIR spectrometer and
to a GC/MS. The kinetic results showed a low pesitiemperature dependence over the
temperature range 273-333 K. Activation energigsrE of the same order of magnitude
considering uncertainties. In fact, the positionhef double bond and the OH group does not
have much impact on this parameter. However, tbeegponential factor A is sensitive to

the position of the double bond.

The studied reactions were also explored thealticfor the first time using
computational methods based on quantum chemicahtleharacterizing the intermediates,
transition states and the subsequent formatioeaxdtion products. The rate constants were
calculated at room temperature employing modifradgition-state theory (MTST). The rate
constants obtained theoretically were found todveel than those obtained experimentally
but remain in the same order of magnitude.

Both experimental and theoretical works show thatrate constants for the reaction
of unsaturated alcohols with ozone increase framoao-substituted unsaturated alcohol to
a di-substituted unsaturated alcohol. Unsaturdtaxhals are very reactive with atmospheric

lifetimes varying from few minutes with nitrate reals to few hours with OH and;O
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Table 1: Rate constants of the ozonolysis of 1P30L, c-2Pa0d t-3H1O0L at different temperatures obtained erpantally by

FTIR and SPME-GC / MS and theoretically using M0Og&311+G(d,p) method.

Theoretical

FTIR SPME-GC/MS . Literature
Compounds calculation
T(K) | R=Kog/krer* Ve | R=Koglkrer* e % %
=K oz/Kref Kos (%10 ) =KoglKref” | Koz (x10 ) Kos(x10 ) | kos(x10 )
273+2 | 0.81%0.04 1.24+0.24 i
1.79+0.18
298+2 | 0.63+0.04 1.61:0.21 152020  1.75:0.25 0.20 1.64+0.18
1P30L
1.79
313+2 | 0.50%0.12 1.67+0.43 i
3332 | 0.51+0.06 2.04+0.28 i
273+2 | 5.32+0.10 8.09+1.55 i
16.90+2.49
opiol | 29832 468:0.15  11.90:1.41 540£0.20  9.07+1.29 1.48 11.50+0.68
16.80°
313+2 | 3.77+0.28|  12.50+1.44 -
333+2  3.86:0.03  15.40+1.13 -
273+2 | 2.71%0.20 4.12+0.84 :
5.83:0.86
_ 298+2 | 2.35+0.28 5.97+0.99 3.90+0.20  6.50+0.95 150 §19+0.75
t-3H10L
6.38
313+2 | 1.87+0.26 6.21+1.02 i
333+2 | 2.05+0.08 8.20+0.68 i

a : (Grosjean and Grosjean. 1993) ; b : (O'Dwyeaalet2010) ; ¢: SAR calculations by (McGillen & 2011); d : (Gibilisco et al., 2015b) ;

e :(Lin et al.. 2016).

* . error= % ; ** : uncertainties calculated by the error prgation method




Table 2: Comparison of the reactivity of;&Cs unsaturated alcohols with ozone

ROH Koz (x10 Homologous Koz (x10"
cm®moleculé’s?) | alkenes | cm®molecule’s™)
mono-substituted alcohol
1-Propen-3-ol
CH,=CHCH ,OH 1.63+0.03" Propené 1.06+0.12
1-Buten-3-ol
CH,=CHCH(OH)CH 5 1.63+0.06° 1-butend’ 0.96+0.09
1-Penten-3-ol* :
1.68+0.3% 1-pentene 1.00£0.01
CH,=CHCH(OH)CH ,CH3
3-Methyl-1-buten-3-ol 3-methyl-1-
CHo=CHC(OH)(CH 1), 0.83:0.10" butend 0.95+0.12
di-substituted alcohol
2-Buten-1-ol .
CH.CH=CHCH ,OH 25.00+4.00 | Cis-2-butené |  12.90+1.13
Cis-2-penten-1-ol * o i
CH+CH,CH=CHCH ,OH 10.50+1.99 Cis-2-pentené 12.82+0.45
Cis-3-hexen-1-ol 6.39+1.66° . -
CHaCH.CH=CH,CH,CH,OH 10.5040.70 Cis-3-hexené 14.40+1.66
Trans-3-hexen-1-ol * Trans-3-
CHCH,CH=CH,CH,CH,0H | 0-24*1.37 hexend 15.70+2.49
Trans-2-hexen-1-ol 2
5.98+0.73 Trans-2 21.50+0.54
hexené

CH3;CH,CH,CH=CHCH ,OH

a: (Parker and Espada-Jallad, 2009), b:(GrosjednGansjean, 1994); c : This work, average of the
two determinations by FTIR and SPME-GC/MS ; d :aiatsch-Carrasco et al., 2004) ; e : (Atkinson
et al., 1995); f: (Grosjean and Grosjean, 199¢)(Gibilisco et al., 2015a) h :(Wegener et al.,
2007) ; i: (Avzianova and Ariya, 2002) ; j:(Grosfeand Grosjean, 1996)

*. average room temperature rate constant obtdyeBTIR and GC/MS, uncertainty on this value
was calculated using the error propagation method.




Table 1: Comparison of activation energies &d pre-exponential factors A of
1P30L, c-2P10L and t-3H1O0L with their homologouseales.

Activation 6 3 Activation A x 10~(cm’
A x 10*%cm®  Homologous .
Compounds energy E moleculg’s?) alkenes energy E;  molecule’s
(J/mol) (J/mol) D)
6054 + 13125+
1P30L 2308 1.80 £1.67 1-pentene® 669 1.7040.10
7501 + . 8 326 + 3.70+0.17
c-2P10L 2179 23.10 +£19.26 Cis-2-pentené 593
5 8436 + Trans-2- 7.60+0.18
t-3H10L 2969 17.10£14.74 hexend 96721222

a: (Avzianova and Ariya, 2002)



Table Error! No text of specified style in documenfropospheric lifetimes of
1P30L, c-2P10L and t-3H10L with OHz®IO3 and CI

Compounds T on : T O3b T NO3C T ‘
1P30L 4 h 17 h 7h 5d
c-2P10L 3h 3h 36 min 4d
t-3H10L 2h 4h 13min 3d

[OH] = 1><106 molecules crﬁ (average overall tropospheric concentration du@ad), [Q] = 1012

molecules crﬁ, [NO,] =3 x 16; and [Cl] = 16 molecules crﬁ.

a: k (OH +1-penten-3-ol) and k (OH+cis-2-penten-1fodbm Orlando et al. (2001); k (OH+ trans-3-
hexen-1-ol) from Gibilisco et al. (2015).

b : this work

¢ : k (NGO; + 1-penten-3-ol) and k (NO+ cis-2-penten-1-ol) from Pfrang et al. (2007) (NO; +
trans-3-hexen-1-ol) from Pfrang et al. (2006).

d : k (ClI + 1-penten-3-ol) and k (CI + cis-2-penten{lfoom Rodriguez et al. (2010); k (Cl + trans-3-
hexen-1-ol) from Gibilisco et al. (2014).



1-Penten-3-ol » T=273K
0,002 = T=298K

T=313K
A T=333K

0,0015 F

0,001

1/t ln(AOalf/Aalc)

0,0005

0 0,0005 0,001 0,0015 0,002 0,0025
1/ t In(AOref/ Aref)

b 1-Penten-3-ol
0,0008
0,0007 |
0,0006 |

0,0005 |

Alc/ A alc)

< 0,0004

0,0003 |

1/tIn(

0,0002 |

0,0001 [

0 L] L] L] L] 1
0 0,0001 0,0002 0,0003 0,0004 0,0005

1/ tin (AO ref/ Aref)

Fig. 1: Plot of I/t In (Agac/ Aac) VS Lt In (Ao / Arer) for the ozonolysis of 1P30L at 273, 298, 313
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Room temperature ozonolysis rate constants of 1-Penten-3-ol, Cis-2-penten-1-ol and
Trans-3-hexen-1-ol are 1.68, 10.50 and 6.24x 10" cm® molecule™ s, respectively.
The ozonolysis of the studied unsaturated alcohols shows alow positive temperature
dependence.

Calculations have highlighted the formation of a pre-reaction complex that leadsto an
activated complex.

Atmospheric lifetimes of the studied compounds toward ozone are of few hours.
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