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Abstract

Bioactive glasses have the physical characteristics enabling them to be used in bone tissue 

engineering applications. However, the exact mechanism of the interactions between the glass 

surface and environment leading to the transition from the vitreous phase to the crystalline 

phase remains a subject of study. This work focuses on the growth of a calcium phosphate layer 

on the surface of the glass after immersion in a mineral solution, which mimics the mineral 

phase of human blood. The investigations use the Inductively Coupled Plasma and the Atomic 

Force Microscopy to establish the kinetic of crystallization, the kinetic of chemical reactivity 

and the surface transformations such as structure, texture and morphology of the bioactive glass. 

Obtained results show the progressive formation of a hydroxyapatite layer within 2 weeks. This 

crystal which is that of the bone belongs to the crystallographic structure within space group of 

P63/m. In addition, results show a decrease of the gradient of thickness which varies according 

to the immersion time from 7.5 µm to 2.8 µm and an increase of the homogeneity of the surface 

visible by the lowering of the gradient in the phase measurement from 60 Å to 15 Å.
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1 Introduction 

In the field of biomedical research, many different compositions were studied for their 

biocompatible properties and their actions within the body. Bioactive glass in the SiO2-Na2O-

CaO-P2O5 system has been widely studied and their utility in the bone restoration area has been 

accepted [1-5]. Since their invention [6-8], synthetic biomaterials have been considered a good 

option for replacing biological bone grafts. Indeed, nowadays, calcium phosphate, calcium 

carbonate and bioactive glasses are used as biomaterials in orthopaedic surgery. They present 

the advantages of being available in unlimited quantity, offering a more adaptable option 

outside of heterografts and xenografts and completely avoiding disease transmission. In 

addition, recent studies show the possibility of further benefit brought by these materials. They 

may have other advantages such as the functionalization of their surface for the transport of 

molecules [9] of biological interest and activates biological reactions useful for the restoration 

of bone tissue such as cell differentiation [10], osteogenesis and angiogenesis [11]. All these 

characteristics must be investigated during the engineering of new biomaterials. In fact, 

bioactivity, reaction kinetics and physicochemical analysis are essential in order to obtain data 

on the evolution of these materials over time. They help understanding physicochemical 

mechanisms responsible for surface transformations once in contact with the physiological 

environment.

Nevertheless, the evolution over time of the biomaterials and the characteristics of the 

crystallization steps remains a topic of the current study. Atomic Force Microscope (AFM) [12] 



coupled with Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) enable 

us to analyse the surface behaviour at the nano/micro scale and its growth over the time of 

soaking. Before that, crystalline structure and functional groups have had to be highlighted. 

These analyses will follow the crystallographic structure evolutions and functional groups 

formation after contact with SBF. X-ray Diffraction (XRD) and Fourier Transformation Infra-

Red (FTIR) techniques have been used. Complementarities between employed techniques such 

as XRD, FTIR, ICP-OES and AFM give a full range of information pertaining to the surface 

transformations from amorphous system to a calcium phosphate which is the mineral part of 

the mature bone. The hydroxyapatite crystal (HA) with chemical formula Ca10(PO4)6(OH)2 

layer is similar to the crystal composing human bones.

Analysis by phase imaging and chemical mapping used in this study can be used in the 

characterisation of inorganic as well as organic compounds and translate into a visible 

difference between each element [13,14]. In this study, this mechanic will be used to 

characterize the transformation of the surface of the materials from glass to mature bone 

crystals. The two main characteristics tracked have been the roughness and the homogeneity of 

the surface. Roughness was measured using the gradient of the higher and lower part of the 

surface. Homogeneity was tracked by measuring vibrations of the AFM probe on the different 

surfaces, the change in reaction indicates a difference in the materials rugosity. In addition, 

measurements of layer thickness formed were made on the same samples as those used for 

roughness and homogeneity measurements in this work. Obtained results allow for a study of 

the transformation kinetics through the different phases of the crystallisation.

This study focuses on the synthesis of glass in the system SiO2-Na2O-CaO-P2O5 using the 

melting and quenching pathway. The chemical composition of the studied glass is 46% SiO2-

24% CaO-24% Na20-6%P2O5 called 46S6. It has been the subject of further studies within the 

laboratory [15,16] and present a high potential for applications on the biomedical field [17-19]. 



The synthesis and characterization of the 46S6 will be further discussed in this study. Such 

discussion will explore the different stages of development of the HA layer after immersion in 

a Simulated Body Fluid (SBF) for three different durations.

2 Material and Methods

2.1 Preparation of bioactive glass

Sodium metasilicate (Na2SiO3: 42.06 wt%), calcium metasilicate (CaSiO3: 49.51 wt%) and 

sodium metaphosphate (Na3P3O9: 8.43 wt%) have been the initial products that were used to 

form the oxides SiO2; CaO, Na2O and P2O5 and obtain the desired composition of 46 wt% SiO2, 

24 wt% CaO, 24 wt% Na2O and 6 wt% P2O5. Initial products have been weighed according to 

the quantity of glass required and mixed in a polyethylene bottle for 2 hours in a planetary 

mixer. Origin and purity of these chemicals are presented in table 1.

Table 1. Origin and purity of products for the melting process.

Chemical Name Source Mole fraction purity a

Sodium metasilicate (Na2SiO3) Fisher chemical ≥ 0.97

Sodium metaphosphate 
(Na3P3O9)

Alfa Aesar 0.95

Calcium metasilicate (CaSiO3) Alfa Aesar ≥ 0.97

a Purity of these elements has been controlled but elements have not been purified again.

The mixed powder was melted in platinum crucibles because of its melting temperature of 1786 

°C, it avoids metal releases or eventual contaminations. It was placed in an electric furnace. 

The first rise of temperatures rate was 10°C min-1 from 20 to 900 °C for a duration of one hour 



corresponding to a decarbonization process in order to separate the different oxides. During this 

phase, following reactions took place:

𝐶𝑎𝑆𝑖𝑂3→𝐶𝑎𝑂 + 𝑆𝑖𝑂2

𝑁𝑎2𝑆𝑖𝑂3→𝑁𝑎2𝑂 + 𝑆𝑖𝑂2

2 𝑁𝑎3𝑃3𝑂9→ 3𝑁𝑎2𝑂 + 3𝑃2𝑂5

This period is followed by a new rise of temperature at 20 °C min-1 until 1350 °C corresponding 

to our glass melting temperature. The melting phase consists of stabilization of the temperature 

at 1350 °C for three hours. The thermal elaboration process is described in figure 1.

After the melting phase, the sample was air quenched and transferred to a preheated cylindric 

brass mould, annealed at Tg = 540 ± 20 °C for 4 more hours to stabilize the glass in order to 

reduce physical tension due to the brutal loss of temperature during the air quenching.

2.2 Formatting the sample

Obtained cylinders of glasses have been put in wax. Following the waxing, each sample was 

polished in a moist environment so that only one side of the bioactive glass may be in contact 

with the physiological fluid during in vitro tests. In this way, the contact surface of the bioactive 

glass was identical for all samples. This polishing with silicon carbide paper (grain 2400) also 

removes the surface layer that may have been polluted. At the end of this operation, samples 

were rinsed using, alcohol and distilled water. Samples were shaped as small cylinders with a 

diameter of 13 mm for a high of 8 mm as shown in figure 2.  

2.3 Physicochemical characterization techniques of elaborated glass

2.3.1 Thermal analysis. 



The glass thermal characteristics have been recorded by using Differential Scanning 

Calorimetry (DSC). Thermal characteristics measurements were carried out using a Setaram 

Labsys 1600TG-DTA/DSC thermal analyser under N2 gas atmosphere at 0.1 MPa without 

precise pressure control.

2.3.2 Structure and functional groups investigations by using XRD and FTIR. 

X-ray Diffraction (XRD) and Fourier transformed Infra-Red spectroscopy (FTIR) have been 

used to control structure and functional groups of the elaborated glass. The control of the 

amorphous nature and the potential displacements and/or new functional groups formation in 

these compounds were the main objectives of this characterization. 

XRD patterns were recorded between 5 ° and 90 ° (2θ) by a PANalytical X’Pert PRO 

diffractometer with a precision of 0.026 ° by steps and a count time of 40 s per step using Cu 

Kα. Voltage was of 50 kV and the current was 40 mA during analyses. Powdered samples were 

prepared for XRD analysis and back-loaded into steel sample holders. 

For FTIR analysis, samples were embedded in KBr pellets and recorded by Bruker Equinox 55 

spectrometer between 4000 cm-1 and 400 cm-1 in transmittance mode with a resolution of 2 

cm-1. XRD and FTIR analyses were carried out at ambient temperature.

2.3.3 Surface analysis by using AFM. 

Atomic Force Microscopy (AFM) has been used on the surface of the glass for three different 

immersion times corresponding to 2 weeks, 1 month and 2 months. The AFM operation mode 

used was phase imaging, sensitive to cantilever phase shifts due to changing interactions 

between the tip of the AFM cantilever and the surface. This enables topographical mapping of 

surfaces while simultaneously recording local material differences allowing surface structure 

and material domains to be directly compared.  It is particularly useful in analysing polymers, 



composites, and surface coatings. Images have been obtained using a FlexV5+ Scanhead 

connected to a C3000 controller operating in Phase imaging mode in air with 158.614 kHz 

vibration frequency and 1.5 V vibration amplitude. Image analysis was done using Mountain 

Maps Software. 

2.3.4 Thickness measurement of the formed hydroxyapatite layer

The thickness of the deposited layer was measured using a digital microscope with 3D 

measurement technology (VHX-5000, KEYENCE) with a precision of 0.1 µm. The deposited 

layer was scratched with a blade until the vitreous surface appeared, then the thickness was 

measured at different points of the sample to calculate an average.

2.4 In vitro assays.

Soaking preparation for in vitro chemical reactivity has been carried out. Bioactive glass 

cylinders (8 mm of height and 13 mm of diameter) were placed in 8 mL of a previously prepared 

SBF solution. Only one surface of each cylinder has been in contact with SBF solution.  

Chemical composition of both SBF and human plasma are presented in table 2 [20]. These 

samples were placed in an incubator with a controlled agitation of 50 revs min-1 and 37 °C for 

fixed times. At the end of these times, each sample was rinsed thoroughly with distilled water 

and then dried at room temperature before shipping for AFM analysis. The SBF was also stored 

for analysis by ICP-OES. These analyses make it possible to highlight the ionic exchanges that 

took place between the surface of the immersed biomaterial and the synthetic physiological 

liquid. Concentrations of silicon (Si), phosphorus (P) and calcium (Ca) in remaining SBF were 

measured for all different periods.

Table 2. Ionic concentrations of SBF and human blood plasma



Ions (Mm) Na+ K+ Mg2
+ Ca2

+ Cl- HCO3
- HPO4

2- SO4
2-

SBF 142.0 5.0 1.5 2.5 147.8 4.2 1.0 0.5

Plasma 142.0 5.0 1.5 2.5 103.0 27.0 1.0 0.5

3 Results and discussion

3.1 Physicochemical characterization of bioactive glass.

3.1.1 Thermal analysis of bioactive glass. 

DSC spectra show the presence of characteristic phase transition temperatures for a glass. The 

vitreous transition Tg, the crystallisation temperature Tc and the melting temperature Tf can be 

seen in figure 3. According to the literature [21], a glass must possess an amorphous structure 

and vitreous transition temperature; these characteristics confirm that the synthesized material 

is a glass and validate our chemical experimental protocol.

3.1.2 Structure and functional grouping of studied bioactive glass. 

FTIR spectra for NBG powder presented in figure 4 show several vibration bands. The Si-O-

Si bending signal at 465 cm-1 and 1230 cm-1 in relation with phosphate groups vibrations at 

1100 cm-1 and 585 cm-1 and finally the Ca presence confirmed by the vibration bands at 800 

cm-1 assigned at Si-O-Ca with non-linking oxygen. The 3348 cm-1 band are due to OH- 

anions, a group from the residual H2O adsorbed on the surface of NBG [22-26]. These results 

confirm the presence of all the typical groups.

XRD diffractograms presented in figure 5 shows signs of an increasing crystallization in the 

function of immersion time. This crystallization is due to the growth of a layer of the crystal 



similar to hydroxyapatite (Ca10(PO4)6(OH)2) on the surface of the 46S6 glass which was 

immersed in SBF. This information validates the bioactivity of the glass. These data also make 

it possible to set up an idea of crystallographic growth kinetics and different phases during the 

growth of the hydroxyapatite layer. The increase in immersion time leads to a growth in size 

and a decrease of the width at half height which can be observed on the two principal 

crystallisation peaks at 27 ° and 34 °. This is probably due to the structuring of the different 

elements into each crystal phase.

3.1.3 Ionic exchanges and chemical reactivity of elaborated glass. 

The utilisation of the ICP-OES allows the measurement with high sensitivity and precise data 

(sensitivity of about 1 ppm depending on the analysed matrix). It allows for the determination 

of ionic exchanges established between the glass and the SBF. Measurements have been 

carried out on the remaining SBF solution. Obtained results show variations of concentration 

of observed elements Si, Ca and P. Si is an indicator of glass dissolution when Ca and P are a 

indicators of calcium phosphate formation. While concentrations of Ca and P decrease with 

time, the Si concentration shows an increase due to the glass surface dissolution during the 

first 15 days that are followed by a significant stabilization. These results can be explained by 

the dissolution of the glass when it is in contact with SBF and the formation of a silica gel 

layer and finally the formation of a calcium phosphate crystal. This mechanism can be 

summarized in three successive phases: glass matrix dissolution followed by silica gel 

formation and then calcium phosphate precipitation. They are developed in five chemical 

stages as described in table 3. This result is in line with previous works [6]. Variation in the 

concentration of followed elements can be seen in figure 6.

Table 3. Reaction stages of bioactive glass



Interaction mechanism between glass surface and SBF: Reaction stages 

Stage 1 Rapid exchange of cation such as Ca2+ with H+ or H3O+ from solution: 

Si-O-Ca+ + H3O+  Si-OH + Ca2+ 

Stage 2 Loss of soluble silica in the form of Si(OH)4 to the solution resulting from breakage 

of Si-O-Si bonds and formation of Si-OH at the glass/solution interface. 

Si-O-Si + H2O = Si-OH + OH-Si 

Stage 3 Condensation and repolymerization of a SiO2 rich layer on the surface depleted in 

alkali and alkaline earth cations. Si-OH + OH-Si = -Si-O-Si- + H2O 

Stage 4 Migration of Ca2+ and PO4
3- groups to the surface of forming CaO-PO4

3- cluster on 

the top of the SiO2
 rich layer, followed by the growth of the amorphous CaP

Stage 5 Crystallization of amorphous CaP by incorporation of OH-, CO3
2- anions from 

solution to form a hydroxyl-carbonate apatite layer

3.2 Surface analysis using AFM.

Surface analyses of the samples that have been immersed for different periods were investigated 

by using AFM technique. Obtained results are presented in figures 7, 8 and 9: 2 conclusions 

can be drawn. The first one is the level gap and the second one is the homogeneity of the surface. 

2 weeks after soaking, the topography results presented in figure 7a show a variation of level 

with a maximum difference of 7.5 µm in thickness, this difference decreases with the increase 

of immersion time. Topography of the one month after soaking presented in figure 8a represents 

a smaller gap of 4 µm. Finally, in figure 9a, 2 months after soaking, the topography shows a 

gap of 2.8 µm. Results show a decrease of the surface roughness due to the transformation of 

the glass surface into a calcium phosphate crystal. 



Homogeneity of the surface is presented in the phase results. Homogeneity for the two weeks 

before soaking is presented in figure 7b, it shows significant variations between the high level 

and the low level, this gap is of about 60 Å. This difference shows material contrast put forth 

by a clear and distinct variance of the surface composition. This observed phenomenon shows 

a crystalline structure, which is most likely due to the HA layer formation. Longer periods of 

immersion in SBF shows more of a uniform material signal with sphere-like structures with 

only a few defects pointing to the material difference. Furthermore, the phase level gap 

decreases with the increase of immersion time. Respectively within a range of 40 Å and 15 Å 

for the one month after soaking in SBF as shown in figure 8b and the two months after soaking 

as shown in figure 9b. Phases and topography overlay are available in figures 7c, 8c, 9c 

respectively for the two weeks, one month and two months after soaking in SBF solution.

3.3 Thickness measurement results

The measurements concerning the thickness of the hydroxyapatite layer formed show an 

increase in the thickness of the layer formed over time. The measurements made on the samples 

immersed two weeks has an average thickness of 193.5 μm, the samples immersed for 1 month 

an average thickness of 248.3 μm and finally the samples immersed for 2 months an average 

thickness of 785.4 μm. An example of a 3D photography in the case of a sample immersed for 

2 months is presented in figure 10.

4 Conclusion

The biomaterials 46S6 presented in this work presents all the characteristics of bioactive glass.  

Physicochemical characterization highlighted its amorphous nature and vitreous transition 

temperature and its capacity to form chemical bonds and turn into a crystal has been recorded.



Obtained results on the investigation of the surface state show the modification of the surface 

linked to the ionic exchanges between the materials and environment (SBF). These exchanges 

lead to changes in the surface state depending on the progress of the transformation of the 

vitreous matrix into the crystal.

The surface in contact with the liquid SBF has a progressive uniformity leading to a diminution 

of the roughness of its surface. This is observable using the AFM by the decrease of the level 

gap from 7.5 µm for the two weeks after soaking sample to 4 µm for the one month after soaking 

and finally to 2.8 µm for the two months after soaking sample. Another result is the 

homogenization of the surface due to the progressive crystallisation. Measurements show 

variations in the gap of phase from 60 Å for two weeks sample to a range of 40 Å and 15 Å for 

respectively one month and two months.

In addition, measurements of the thickness of the formed layer show an increase in thickness 

over time. It goes from 193.5 μm for immersed samples for 2 weeks to 785.4 μm for submerged 

samples for 2 months.

The objectives of this study were to enhance the comprehension of the chemical mechanism 

responsible for the interactions between glass and synthetic physiological liquid and then the 

surface behaviour of glass when it is in contact with physiological simulated solution.  This 

knowledge allows for the development of better biomaterials, more adaptable in regard to the 

nature of the lesion or disease by understanding how the surface of the biomaterials undergo 

different modifications depending on the surrounding environment. 
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Caption figures:

Figure 1: Schema for the synthesis of 46S6
Figure 2: Preparation of the sample’s cylinders of glass/wax
Figure 3: DSC thermogram of 46S6
Figure 4: FTIR spectra results of soaked 46S6
Figure 5: DRX diffractogram of each sample from different immersion time
Figure 6: Evolution of concentration of P, Si and Ca in SBF for different duration of immersion
Figure 7: Topography, phase and 3D topography with phase overlay of two weeks after soaking 
in SBF
Figure 8: Topography, phase and 3D topography with phase overlay of one month after soaking 
in SBF
Figure 9: Topography, phase and 3D topography with phase overlay of two months after 
soaking in SBF
Figure 10: Example of 3D photography for 2 months immerged sample
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Highlights

 Increases of glass surface crystallisation with adapted ionic exchanges kinetic. 

 State of glass surface at different periods was highlighted using AFM analyses.

 Surface homogenization over time, the gap decreases in phase from 60 to 15 Å.

 Surface roughness decreasing over time, the gap decreases in height from 7 to 3 μm.


