D. C. Wallace, W. Fan, and V. Procaccio, Mitochondrial energetics and therapeutics, Annu. Rev. Pathol, vol.5, pp.297-348, 2010.

C. Mammucari, M. Patron, V. Granatiero, and R. Rizzuto, Molecules and roles of mitochondrial calcium signaling, Biofactors, vol.37, pp.219-227, 2011.

M. P. Murphy, How mitochondria produce reactive oxygen species, Biochem. J, vol.417, pp.1-13, 2009.

C. Wang and R. J. Youle, The Role of Mitochondria in Apoptosis, Annu. Rev. Genet, vol.43, pp.95-118, 2009.

R. Nilsson, I. J. Schultz, E. L. Pierce, K. A. Soltis, A. Naranuntarat et al., Discovery of Genes Essential for Heme Biosynthesis through Large-Scale Gene Expression Analysis, Cell Metab, vol.10, pp.119-130, 2009.

L. Laffel, Ketone bodies: A review of physiology, pathophysiology and application of monitoring to diabetes, Diabetes/Metab. Res. Rev, vol.15, pp.412-426, 1999.

W. L. Miller, Steroid hormone synthesis in mitochondria, Mol. Cell. Endocrinol, vol.379, pp.62-73, 2013.

D. C. Chan and . Mitochondria, Dynamic organelles in disease, aging, and development, Cell, vol.125, pp.1241-1252, 2006.

M. Liesa and O. S. Shirihai, Mitochondrial Dynamics in the Regulation of Nutrient Utilization and Energy Expenditure, Cell Metab, vol.17, pp.491-506, 2013.

S. Anderson, A. T. Bankier, B. G. Barrell, M. H. Bruijn, and . De,

A. R. Coulson, J. Drouin, I. C. Eperon, D. P. Nierlich, B. A. Roe et al., Sequence and organization of the human mitochondrial genome, Nature, vol.290, pp.457-465, 1981.

D. C. Wallace, Mitochondrial Diseases in Man and Mouse, Science, vol.283, pp.1482-1488, 1999.

S. Ringer, A third contribution regarding the Influence of the Inorganic Constituents of the Blood on the Ventricular Contraction, J. Physiol. (Lond.), vol.1883, pp.222-225

F. D. Vasington and J. V. Murphy, Ca ion uptake by rat kidney mitochondria and its dependence on respiration and phosphorylation, J. Biol. Chem, vol.237, pp.2670-2677, 1962.

H. F. Deluca and G. W. Engstrom, Calcium uptake by rat kidney mitochondria, Proc. Natl. Acad. Sci, vol.47, pp.1744-1750, 1961.

S. Marchi, M. Bittremieux, S. Missiroli, C. Morganti, S. Patergnani et al., Endoplasmic Reticulum-Mitochondria Communication Through Ca 2+ Signaling: The Importance of Mitochondria-Associated Membranes (MAMs), Adv. Exp. Med. Biol, vol.997, pp.49-67, 2017.

J. B. Hoek, E. Walajtys-rode, and X. Wang, Hormonal stimulation, mitochondrial Ca 2+ accumulation, and the control of the mitochondrial permeability transition in intact hepatocytes, Mol. Cell. Biochem, vol.174, pp.173-179, 1997.

E. Rapizzi, P. Pinton, G. Szabadkai, M. R. Wieckowski, G. Vandecasteele et al., Recombinant expression of the voltage-dependent anion channel enhances the transfer of Ca 2+ microdomains to mitochondria, J. Cell Biol, vol.159, pp.613-624, 2002.

J. M. Baughman, F. Perocchi, H. S. Girgis, M. Plovanich, C. A. Belcher-timme et al., Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter, Nature, vol.476, pp.341-345, 2011.

D. De-stefani, A. Raffaello, E. Teardo, I. Szabò, and R. Rizzuto, A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter, Nature, vol.476, pp.336-340, 2011.

K. J. Kamer and V. K. Mootha, The molecular era of the mitochondrial calcium uniporter, Nat. Rev. Mol. Cell Biol, vol.16, pp.545-553, 2015.

S. Marchi and P. Pinton, The mitochondrial calcium uniporter complex: Molecular components, structure and physiopathological implications, J. Physiol, vol.592, pp.829-839, 2014.

J. K. Foskett and B. Philipson, The mitochondrial Ca 2+ uniporter complex, J. Mol. Cell. Cardiol, vol.78, pp.3-8, 2015.

M. Bragadin, T. Pozzan, and G. F. Azzone, Kinetics of Ca 2+ carrier in rat liver mitochondria, Biochemistry, vol.18, pp.5972-5978, 1979.

F. Perocchi, V. M. Gohil, H. S. Girgis, X. R. Bao, J. E. Mccombs et al., MICU1 encodes a mitochondrial EF hand protein required for Ca 2+ uptake, Nature, vol.467, pp.291-296, 2010.

M. Plovanich, R. L. Bogorad, Y. Sancak, K. J. Kamer, L. Strittmatter et al., MICU2, a Paralog of MICU1, Resides within the Mitochondrial Uniporter Complex to Regulate Calcium Handling, PLoS ONE, issue.8, p.55785, 2013.

G. Csordás, T. Golenár, E. L. Seifert, K. J. Kamer, Y. Sancak et al., both the threshold and cooperative activation of the mitochondrial Ca 2+ uniporter, Cell Metab, vol.17, pp.976-987, 2013.

K. Mallilankaraman, P. Doonan, C. Cárdenas, H. C. Chandramoorthy, M. Müller et al., MICU1 is an essential gatekeeper for MCUmediated mitochondrial Ca 2+ uptake that regulates cell survival, Cell, vol.151, pp.630-644, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00781191

M. Patron, V. Checchetto, A. Raffaello, E. Teardo, D. Vecellio-reane et al., Rizzuto, R. MICU1 and MICU2 finely tune the mitochondrial Ca 2+ uniporter by exerting opposite effects on MCU activity, Mol. Cell, vol.53, pp.726-737, 2014.

D. W. Jung, K. Baysal, and G. P. Brierley, The sodium-calcium antiport of heart mitochondria is not electroneutral, J. Biol. Chem, vol.270, pp.672-678, 1995.

R. K. Dash and D. A. Beard, Analysis of cardiac mitochondrial Na + -Ca 2+ exchanger kinetics with a biophysical model of mitochondrial Ca 2+ handling suggests a 3:1 stoichiometry, J. Physiol, vol.586, pp.3267-3285, 2008.

K. K. Gunter, M. J. Zuscik, and T. E. Gunter, The Na + -independent Ca 2+ efflux mechanism of liver mitochondria is not a passive Ca 2+ /2H + exchanger, J. Biol. Chem, vol.266, pp.21640-21648, 1991.

M. Numata, K. Petrecca, N. Lake, and J. Orlowski, Identification of a mitochondrial Na + /H + exchanger, J. Biol. Chem, vol.273, pp.6951-6959, 1998.

R. Sutton, D. Criddle, M. G. Raraty, A. Tepikin, J. P. Neoptolemos et al., Signal transduction, calcium and acute pancreatitis, Pancreatology, vol.3, pp.497-505, 2003.

J. A. Murphy, D. N. Criddle, M. Sherwood, M. Chvanov, R. Mukherjee et al., Direct activation of cytosolic Ca 2+ signaling and enzyme secretion by cholecystokinin in human pancreatic acinar cells, Gastroenterology, vol.135, pp.632-641, 2008.

L. S. Jouaville, P. Pinton, C. Bastianutto, G. A. Rutter, and R. Rizzuto, Regulation of mitochondrial ATP synthesis by calcium: Evidence for a long-term metabolic priming, Proc. Natl. Acad. Sci, vol.96, pp.13807-13812, 1999.

A. I. Tarasov, E. J. Griffiths, and G. A. Rutter, Regulation of ATP production by mitochondrial Ca 2+, Cell Calcium, vol.52, pp.28-35, 2012.

A. Rasola and P. Bernardi, Mitochondrial permeability transition in Ca 2+ -dependent apoptosis and necrosis, Cell Calcium, vol.50, pp.222-233, 2011.

R. M. Paredes, J. C. Etzler, L. T. Watts, W. Zheng, and . Lechleiter, J.D. Chemical calcium indicators. Methods, vol.46, pp.143-151, 2008.

J. J. Bassett and G. R. Monteith, Genetically Encoded Calcium Indicators as Probes to Assess the Role of Calcium Channels in Disease and for High-Throughput Drug Discovery, Adv. Pharmacol, vol.79, pp.141-171, 2017.

A. Minta, J. P. Kao, and R. Y. Tsien, Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores, J. Biol. Chem, vol.264, pp.8171-8178, 1989.

R. Rudolf, M. Mongillo, R. Rizzuto, and T. Pozzan, Looking forward to seeing calcium, Nat. Rev. Mol. Cell Biol, vol.4, pp.579-586, 2003.

G. Grynkiewicz, M. Poenie, and R. Y. Tsien, A new generation of Ca 2+ indicators with greatly improved fluorescence properties, J. Biol. Chem, vol.260, pp.3440-3450, 1985.

T. J. Collins, P. Lipp, M. J. Berridge, and M. D. Bootman, Mitochondrial Ca 2+ uptake depends on the spatial and temporal profile of cytosolic Ca 2+ signals, J. Biol. Chem, vol.276, pp.26411-26420, 2001.

J. G. Pitter, P. Maechler, C. B. Wollheim, and A. Spät, Mitochondria respond to Ca 2+ already in the submicromolar range: Correlation with redox state, Cell Calcium, vol.31, pp.97-104, 2002.

T. N. Andrienko, E. Picht, and D. M. Bers, Mitochondrial free calcium regulation during sarcoplasmic reticulum calcium release in rat cardiac myocytes, J. Mol. Cell. Cardiol, vol.46, pp.1027-1036, 2009.

T. Pozzan and R. Rudolf, Measurements of mitochondrial calcium in vivo, Biochim. Biophys. Acta, vol.1787, pp.1317-1323, 2009.

D. Thomas, S. C. Tovey, T. J. Collins, M. D. Bootman, M. J. Berridge et al., A comparison of fluorescent Ca 2+ indicator properties and their use in measuring elementary and global Ca 2+ signals, Cell Calcium, vol.28, pp.213-223, 2000.

F. De-giorgi, Z. Ahmed, C. Bastianutto, M. Brini, L. S. Jouaville et al., Targeting GFP to organelles, Methods Cell Biol, vol.58, pp.75-85, 1999.

R. Rizzuto, M. Brini, and T. Pozzan, Intracellular targeting of the photoprotein aequorin: A new approach for measuring, in living cells, Ca 2+ concentrations in defined cellular compartments, Cytotechnology, vol.11, pp.44-46, 1993.

R. Rizzuto, M. Brini, and T. Pozzan, Targeting recombinant aequorin to specific intracellular organelles, Methods Cell Biol, vol.40, pp.339-358, 1994.

L. Filippin, M. C. Abad, S. Gastaldello, P. J. Magalhães, D. Sandonà et al., Improved strategies for the delivery of GFP-based Ca 2+ sensors into the mitochondrial matrix, Cell Calcium, vol.37, pp.129-136, 2005.

A. E. Palmer and R. Y. Tsien, Measuring calcium signaling using genetically targetable fluorescent indicators, Nat. Protoc, 1057.

R. De-michele, F. Carimi, and W. B. Frommer, Mitochondrial biosensors, Int. J. Biochem. Cell Biol, vol.48, pp.39-44, 2014.

S. Arnaudeau, W. L. Kelley, J. V. Walsh, and N. Demaurex, Mitochondria recycle Ca 2+ to the endoplasmic reticulum and prevent the depletion of neighboring endoplasmic reticulum regions, J. Biol. Chem, vol.276, pp.29430-29439, 2001.

X. Lu, K. S. Ginsburg, S. Kettlewell, J. Bossuyt, G. L. Smith et al., Measuring local gradients of intramitochondrial [Ca 2+ ] in cardiac myocytes during sarcoplasmic reticulum Ca 2+ release, Circ. Res, vol.112, pp.424-431, 2013.

R. C. Wüst, M. Helmes, J. L. Martin, T. J. Van-der-wardt, R. J. Musters et al., Rapid frequency-dependent changes in free mitochondrial calcium concentration in rat cardiac myocytes, J. Physiol, vol.595, 2001.

O. Shimomura, F. H. Johnson, and Y. Saiga, Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J. Cell Comp. Physiol, vol.59, pp.223-239, 1962.

M. Brini, P. Pinton, T. Pozzan, and R. Rizzuto, Targeted recombinant aequorins: Tools for monitoring [Ca 2+ ] in the various compartments of a living cell, Microsc. Res. Tech, vol.46, pp.380-389, 1999.

M. Brini, R. Marsault, C. Bastianutto, J. Alvarez, T. Pozzan et al., Transfected aequorin in the measurement of cytosolic Ca 2+ concentration ([Ca 2+ ]c). A critical evaluation, J. Biol. Chem, vol.270, pp.9896-9903, 1995.

R. Rizzuto, A. W. Simpson, M. Brini, and T. Pozzan, Rapid changes of mitochondrial Ca 2+ revealed by specifically targeted recombinant aequorin, Nature, vol.358, pp.325-327, 1992.

D. Ottolini, T. Calì, and M. Brini, Methods to measure intracellular Ca 2+ fluxes with organelle-targeted aequorin-based probes, Methods Enzymol, vol.543, pp.21-45, 2014.

M. Bonora, C. Giorgi, A. Bononi, S. Marchi, S. Patergnani et al., Subcellular calcium measurements in mammalian cells using jellyfish photoprotein aequorin-based probes, Nat. Protoc, vol.8, pp.2105-2118, 2013.

G. S. Baird, D. A. Zacharias, and R. Y. Tsien, Circular permutation and receptor insertion within green fluorescent proteins, Proc. Natl. Acad. Sci, vol.96, pp.11241-11246, 1999.

J. Nakai, M. Ohkura, and K. Imoto, A high signal-to-noise Ca 2+ probe composed of a single green fluorescent protein, Nat. Biotechnol, vol.19, pp.137-141, 2001.

T. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger et al., Ultrasensitive fluorescent proteins for imaging neuronal activity, Nature, vol.499, pp.295-300, 2013.

A. Miyawaki, J. Llopis, R. Heim, J. M. Mccaffery, J. A. Adams et al., Fluorescent indicators for Ca 2+ based on green fluorescent proteins and calmodulin, Nature, vol.388, pp.882-887, 1997.

P. R. Selvin, The renaissance of fluorescence resonance energy transfer, Nat. Struct. Biol, vol.7, pp.730-734, 2000.

S. Padilla-parra and M. Tramier, FRET microscopy in the living cell: Different approaches, strengths and weaknesses, Bioessays, vol.34, pp.369-376, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00683306

V. A. Romoser, P. M. Hinkle, and A. Persechini, Detection in living cells of Ca 2+ -dependent changes in the fluorescence emission of an indicator composed of two green fluorescent protein variants linked by a calmodulin-binding sequence. A new class of fluorescent indicators, J. Biol. Chem, vol.272, pp.13270-13274, 1997.

A. E. Palmer, Y. Qin, J. G. Park, and J. E. Mccombs, Design and application of genetically encoded biosensors, Trends Biotechnol, vol.29, pp.144-152, 2011.

Y. Zhao, S. Araki, J. Wu, T. Teramoto, Y. Chang et al., An expanded palette of genetically encoded Ca 2+ indicators, Science, vol.333, pp.1888-1891, 2011.

H. Deng, S. Yan, Y. Huang, C. Lei, and Z. Nie, Design strategies for fluorescent proteins/mimics and their applications in biosensing and bioimaging, TrAC Trends in Anal. Chem, p.115757, 2020.

M. R. Lewis and W. H. Lewis, Mitochondria in Tissue Culture, Science, vol.39, pp.330-333, 1914.

J. Bereiter-hahn and M. Vöth, Dynamics of mitochondria in living cells: Shape changes, dislocations, fusion, and fission of mitochondria, Microsc. Res. Tech, vol.27, pp.198-219, 1994.

J. D. Cortese, Stimulation of rat liver mitochondrial fusion by an outer membrane-derived aluminum fluoride-sensitive protein fraction, Exp. Cell Res, vol.240, pp.122-133, 1998.

J. D. Cortese, L. A. Voglino, and C. R. Hackenbrock, Novel fluorescence membrane fusion assays reveal GTPdependent fusogenic properties of outer mitochondrial membrane-derived proteins, Biochimica et Biophysica Acta (BBA) Biomembranes, pp.185-198, 1371.

J. Nunnari, W. F. Marshall, A. Straight, A. Murray, J. W. Sedat et al., Mitochondrial transmission during mating in Saccharomyces cerevisiae is determined by mitochondrial fusion and fission and the intramitochondrial segregation of mitochondrial DNA, Mol. Biol. Cell, vol.8, pp.1233-1242, 1997.

R. Rizzuto, P. Pinton, W. Carrington, F. S. Fay, K. E. Fogarty et al., Close Contacts with the Endoplasmic Reticulum as Determinants of Mitochondrial Ca 2+ Responses, Science, vol.280, pp.1763-1766, 1998.

B. Westermann, Mitochondrial fusion and fission in cell life and death, Nat. Rev. Mol. Cell Biol, vol.11, pp.872-884, 2010.

D. C. Chan, Mitochondrial fusion and fission in mammals, Annu. Rev. Cell Dev. Biol, vol.22, pp.79-99, 2006.

T. Wai and T. Langer, Mitochondrial Dynamics and Metabolic Regulation, Trends Endocrinol. Metab, vol.27, pp.105-117, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02391015

L. Tilokani, S. Nagashima, V. Paupe, and J. Prudent, Mitochondrial dynamics: Overview of molecular mechanisms, Essays Biochem, vol.62, pp.341-360, 2018.

M. Liesa, M. Palacín, and A. Zorzano, Mitochondrial dynamics in mammalian health and disease, Physiol. Rev, vol.89, pp.799-845, 2009.

F. Burté, V. Carelli, P. F. Chinnery, and P. Yu-wai-man, Disturbed mitochondrial dynamics and neurodegenerative disorders, Nat. Rev. Neurol, vol.11, pp.11-24, 2015.

S. A. Detmer and D. C. Chan, Functions and dysfunctions of mitochondrial dynamics, Nat. Rev. Mol. Cell Biol, vol.8, pp.870-879, 2007.

H. Chen, A. Chomyn, and D. C. Chan, Disruption of fusion results in mitochondrial heterogeneity and dysfunction, J. Biol. Chem, vol.280, pp.26185-26192, 2005.

H. Chen, M. Vermulst, Y. E. Wang, A. Chomyn, T. A. Prolla et al., Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations, Cell, vol.141, pp.280-289, 2010.

A. S. Rambold, B. Kostelecky, N. Elia, and J. Lippincott-schwartz, Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation, Proc. Natl. Acad. Sci, vol.108, pp.10190-10195, 2011.

H. Otera, N. Ishihara, and K. Mihara, New insights into the function and regulation of mitochondrial fission, Biochim. Biophys. Acta, vol.1833, pp.1256-1268, 2013.

S. Pickles, P. Vigié, and R. J. Youle, Mitophagy and Quality Control Mechanisms in Mitochondrial Maintenance, Curr. Biol, vol.28, pp.170-185, 2018.

R. J. Youle and A. M. Van-der-bliek, Mitochondrial fission, fusion, and stress, Science, vol.337, pp.1062-1065, 2012.

S. M. Ferguson and P. De-camilli, Dynamin, a membrane-remodelling GTPase, Nat. Rev. Mol. Cell Biol, vol.13, pp.75-88, 2012.

T. Koshiba, S. A. Detmer, J. T. Kaiser, H. Chen, J. M. Mccaffery et al., Structural basis of mitochondrial tethering by mitofusin complexes, Science, vol.305, pp.858-862, 2004.

T. Brandt, L. Cavellini, W. Kühlbrandt, and M. M. Cohen, A mitofusin-dependent docking ring complex triggers mitochondrial fusion in vitro, vol.5, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01550113

N. Ishihara, Y. Eura, and K. Mihara, Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity, J. Cell. Sci, vol.117, pp.6535-6546, 2004.

F. Legros, A. Lombès, P. Frachon, and M. Rojo, Mitochondrial fusion in human cells is efficient, requires the inner membrane potential, and is mediated by mitofusins, Mol. Biol. Cell, vol.13, pp.4343-4354, 2002.

T. Ban, T. Ishihara, H. Kohno, S. Saita, A. Ichimura et al., Molecular basis of selective mitochondrial fusion by heterotypic action between OPA1 and cardiolipin, Nat. Cell Biol, vol.19, pp.856-863, 2017.

B. Head, L. Griparic, M. Amiri, S. Gandre-babbe, and A. M. Van-der-bliek, Inducible proteolytic inactivation of OPA1 mediated by the OMA1 protease in mammalian cells, J. Cell Biol, vol.187, pp.959-966, 2009.

S. Ehses, I. Raschke, G. Mancuso, A. Bernacchia, S. Geimer et al., Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1Control of OPA1 by m-AAA protease and OMA1, J. Cell Biol, vol.187, pp.1023-1036, 2009.

L. Griparic, T. Kanazawa, and A. M. Van-der-bliek, Regulation of the mitochondrial dynamin-like protein Opa1 by proteolytic cleavage, J. Cell Biol, vol.178, pp.757-764, 2007.

Z. Song, H. Chen, M. Fiket, C. Alexander, and D. C. Chan, OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L, J. Cell Biol, vol.178, pp.749-755, 2007.

T. Macvicar and T. Langer, OPA1 processing in cell death and disease-the long and short of it, J. Cell. Sci, vol.129, pp.2297-2306, 2016.

P. Mishra, V. Carelli, G. Manfredi, and D. C. Chan, Proteolytic Cleavage of Opa1 Stimulates Mitochondrial Inner Membrane Fusion and Couples Fusion to Oxidative Phosphorylation, Cell Metab, vol.19, pp.630-641, 2014.

E. Smirnova, L. Griparic, D. L. Shurland, and A. M. Van-der-bliek, Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells, Mol. Biol. Cell, vol.12, pp.2245-2256, 2001.

J. R. Friedman, L. L. Lackner, M. West, J. R. Dibenedetto, J. Nunnari et al., ER Tubules Mark Sites of Mitochondrial Division, Science, vol.334, pp.358-362, 2011.

S. C. Lewis, L. F. Uchiyama, and J. Nunnari, ER-mitochondria contacts couple mtDNA synthesis with mitochondrial division in human cells, Science, vol.353, p.5549, 2016.

C. Fröhlich, S. Grabiger, D. Schwefel, K. Faelber, E. Rosenbaum et al., Structural insights into oligomerization and mitochondrial remodelling of dynamin 1-like protein, EMBO J, vol.32, pp.1280-1292, 2013.

J. A. Mears, L. L. Lackner, S. Fang, E. Ingerman, J. Nunnari et al., Conformational changes in Dnm1 support a contractile mechanism for mitochondrial fission, Nat. Struct. Mol. Biol, vol.18, pp.20-26, 2011.

A. L. Hatch, W. Ji, R. A. Merrill, S. Strack, and H. N. Higgs, Actin filaments as dynamic reservoirs for Drp1 recruitment, Mol. Biol. Cell, vol.27, pp.3109-3121, 2016.

C. S. Palmer, L. D. Osellame, D. Laine, O. S. Koutsopoulos, A. E. Frazier et al., MiD49 and MiD51, new components of the mitochondrial fission machinery, EMBO Rep, vol.12, pp.565-573, 2011.

O. C. Losón, Z. Song, H. Chen, D. C. Chan, and . Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission, Mol. Biol. Cell, vol.24, pp.659-667, 2013.

S. Gandre-babbe and A. M. Van-der-bliek, The novel tail-anchored membrane protein Mff controls mitochondrial and peroxisomal fission in mammalian cells, Mol. Biol. Cell, vol.19, pp.2402-2412, 2008.

J. E. Lee, L. M. Westrate, H. Wu, C. Page, and G. K. Voeltz, Multiple dynamin family members collaborate to drive mitochondrial division, Nature, vol.540, pp.139-143, 2016.

R. Chakrabarti, W. Ji, R. V. Stan, J. De-juan-sanz, T. A. Ryan et al., INF2-mediated actin polymerization at the ER stimulates mitochondrial calcium uptake, inner membrane constriction, and division, J. Cell Biol, vol.217, pp.251-268, 2018.

B. Cho, H. M. Cho, Y. Jo, H. D. Kim, M. Song et al., Constriction of the mitochondrial inner compartment is a priming event for mitochondrial division, Nat. Commun, vol.8, p.15754, 2017.

J. R. Hom, J. S. Gewandter, L. Michael, S. Sheu, and Y. Yoon, Thapsigargin induces biphasic fragmentation of mitochondria through calcium-mediated mitochondrial fission and apoptosis, J. Cell. Physiol, vol.212, pp.498-508, 2007.

D. Tondera, F. Czauderna, K. Paulick, R. Schwarzer, J. Kaufmann et al., The mitochondrial protein MTP18 contributes to mitochondrial fission in mammalian cells, J. Cell. Sci, vol.118, pp.3049-3059, 2005.

G. E. Palade, The fine structure of mitochondria, Anat. Rec, vol.114, pp.427-451, 1952.

D. C. Joshi and J. C. Bakowska, Determination of Mitochondrial Membrane Potential and Reactive Oxygen Species in Live Rat Cortical Neurons, J. Vis. Exp, vol.51, p.2704, 2011.

B. Chazotte, Labeling Mitochondria with Fluorescent Dyes for Imaging, Cold Spring Harb. Protoc, p.4948, 2009.

J. F. Buckman, H. Hernández, G. J. Kress, T. V. Votyakova, S. Pal et al., MitoTracker labeling in primary neuronal and astrocytic cultures: Influence of mitochondrial membrane potential and oxidants, J. Neurosci. Methods, vol.104, pp.165-176, 2001.

B. Chazotte, Labeling Mitochondria with MitoTracker Dyes, Cold Spring Harb. Protoc, 2011.

M. Poot, L. L. Gibson, and V. L. Singer, Detection of apoptosis in live cells by MitoTracker red CMXRos and SYTO dye flow cytometry, Cytometry, vol.27, pp.358-364, 1997.

T. Hallap, S. Nagy, U. Jaakma, A. Johannisson, and H. Rodriguez-martinez, Mitochondrial activity of frozenthawed spermatozoa assessed by MitoTracker Deep Red 633, Theriogenology, vol.63, pp.2311-2322, 2005.

C. Cottet-rousselle, X. Ronot, X. Leverve, and J. Mayol, Cytometric assessment of mitochondria using fluorescent probes, Cytom. Part A, vol.79, pp.405-425, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00628558

S. Huang, R. Han, Q. Zhuang, L. Du, H. Jia et al., New photostable naphthalimide-based fluorescent probe for mitochondrial imaging and tracking, Biosens. Bioelectron, vol.71, pp.313-321, 2015.

T. Gao, H. He, R. Huang, M. Zheng, F. Wang et al., BODIPY-based fluorescent probes for mitochondria-targeted cell imaging with superior brightness, low cytotoxicity and high photostability. Dyes Pigment, vol.141, pp.530-535, 2017.

M. Galanis, R. J. Devenish, and P. Nagley, Duplication of leader sequence for protein targeting to mitochondria leads to increased import efficiency, FEBS Lett, vol.282, pp.425-430, 1991.

A. J. Molina and O. S. Shirihai, Monitoring mitochondrial dynamics with photoactivatable [corrected] green fluorescent protein, Methods Enzymol, vol.457, pp.289-304, 2009.

G. H. Patterson and J. Lippincott-schwartz, A Photoactivatable GFP for Selective Photolabeling of Proteins and Cells, Science, vol.297, pp.1873-1877, 2002.

S. Jakobs, A. C. Schauss, and S. W. Hell, Photoconversion of matrix targeted GFP enables analysis of continuity and intermixing of the mitochondrial lumen, FEBS Lett, vol.554, pp.194-200, 2003.

A. J. Mellott, H. E. Shinogle, D. S. Moore, and M. S. Detamore, Fluorescent Photo-conversion: A second chance to label unique cells, Cell. Mol. Bioeng, vol.8, pp.187-196, 2015.

D. M. Chudakov, S. Lukyanov, and K. A. Lukyanov, Using photoactivatable fluorescent protein Dendra2 to track protein movement, BioTechniques, vol.42, pp.553-556, 2007.

A. H. Pham, J. M. Mccaffery, and D. C. Chan, Mouse lines with photo-activatable mitochondria to study mitochondrial dynamics, Genesis, vol.50, pp.833-843, 2012.

S. M. Han, H. S. Baig, and M. Hammarlund, Mitochondria Localize to Injured Axons to Support Regeneration, Neuron, vol.92, pp.1308-1323, 2016.

G. Bertolin, A. Bulteau, M. Alves-guerra, A. Burel, M. Lavault et al., Aurora kinase A localises to mitochondria to control organelle dynamics and energy production, vol.7, p.38111, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01862597

N. E. Fissi, M. Rojo, A. Aouane, E. Karatas, G. Poliacikova et al., Mitofusin gain and loss of function drive pathogenesis in Drosophila models of CMT2A neuropathy, EMBO Rep, vol.19, issue.8, p.45241, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02088624

S. Jakobs, High resolution imaging of live mitochondria, Biochim. Biophys. Acta, vol.1763, pp.561-575, 2006.

L. Simula and S. Campello, Monitoring the Mitochondrial Dynamics in Mammalian Cells, Methods Mol. Biol, vol.1782, pp.267-285, 2018.

M. G. Gustafsson, Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution, Proc. Natl. Acad. Sci, vol.102, pp.13081-13086, 2005.

S. W. Hell and J. Wichmann, Breaking the diffraction resolution limit by stimulated emission: Stimulatedemission-depletion fluorescence microscopy, Opt. Lett, vol.19, pp.780-782, 1994.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych et al., Imaging intracellular fluorescent proteins at nanometer resolution, Science, vol.313, pp.1642-1645, 2006.

M. J. Rust, M. Bates, and X. Zhuang, Stochastic optical reconstruction microscopy (STORM) provides subdiffraction-limit image resolution, Nat. Methods, vol.3, pp.793-795, 2006.

R. Fiolka, L. Shao, E. H. Rego, M. W. Davidson, and M. G. Gustafsson, Time-lapse two-color 3D imaging of live cells with doubled resolution using structured illumination, Proc. Natl. Acad. Sci, vol.109, pp.5311-5315, 2012.

S. Shim, C. Xia, G. Zhong, H. P. Babcock, J. C. Vaughan et al., Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes, Proc. Natl. Acad. Sci, vol.109, pp.13978-13983, 2012.

D. C. Jans, C. A. Wurm, D. Riedel, D. Wenzel, F. Stagge et al., STED superresolution microscopy reveals an array of MINOS clusters along human mitochondria, Proc. Natl. Acad. Sci, vol.110, pp.8936-8941, 2013.

K. Kehrein, R. Schilling, B. V. Möller-hergt, C. A. Wurm, S. Jakobs et al., Organization of Mitochondrial Gene Expression in Two Distinct Ribosome-Containing Assemblies, Cell Rep, vol.10, pp.843-853, 2015.

T. A. Brown, A. N. Tkachuk, G. Shtengel, B. G. Kopek, D. F. Bogenhagen et al., Superresolution Fluorescence Imaging of Mitochondrial Nucleoids Reveals Their Spatial Range, Limits, and Membrane Interaction, Mol. Cell. Biol, vol.31, pp.4994-5010, 2011.

F. Balzarotti, Y. Eilers, K. C. Gwosch, A. H. Gynnå, V. Westphal et al., Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes, vol.355, pp.606-612, 2017.

B. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie et al., Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution, Science, p.1257998, 2014.

M. Schuler, A. Lewandowska, G. D. Caprio, W. Skillern, S. Upadhyayula et al., Miro1-mediated mitochondrial positioning shapes intracellular energy gradients required for cell migration, Mol. Biol. Cell, vol.28, pp.2159-2169, 2017.

K. Sinha, J. Das, P. B. Pal, and P. C. Sil, Oxidative stress: The mitochondria-dependent and mitochondriaindependent pathways of apoptosis, Arch. Toxicol, vol.87, pp.1157-1180, 2013.

C. Guo, L. Sun, X. Chen, and D. Zhang, Oxidative stress, mitochondrial damage and neurodegenerative diseases, Neural Regen. Res, vol.8, 2003.

W. N. Ross, Understanding calcium waves and sparks in central neurons, Nat. Rev. Neurosci, vol.13, pp.157-168, 2012.

A. M. James and M. P. Murphy, How mitochondrial damage affects cell function, J. Biomed. Sci, vol.9, pp.475-487, 2002.

S. J. Martin, C. M. Henry, and S. P. Cullen, A Perspective on Mammalian Caspases as Positive and Negative Regulators of Inflammation, Mol. Cell, vol.46, pp.387-397, 2012.

L. Hu, H. Wang, L. Huang, Y. Zhao, and J. Wang, The Protective Roles of ROS-Mediated Mitophagy on 125I Seeds Radiation Induced Cell Death in HCT116 Cells, Oxidative Med. Cell. Longev, p.9460462, 2016.

J. J. Lemasters, Selective Mitochondrial Autophagy, or Mitophagy, as a Targeted Defense against Oxidative Stress, Mitochondrial Dysfunction, and Aging, Rejuvenation Res, vol.8, pp.3-5, 2005.

D. Narendra, A. Tanaka, D. Suen, and R. J. Youle, Parkin is recruited selectively to impaired mitochondria and promotes their autophagy, J. Cell Biol, vol.183, pp.795-803, 2008.

S. L. Clark, Cellular differentiation in the kidneys of newborn mice studied with the electron microscope, J. Biophys. Biochem. Cytol, vol.3, pp.349-362, 1957.

A. M. Pickrell and R. J. Youle, The Roles of PINK1, Parkin, and Mitochondrial Fidelity in Parkinson's disease, Neuron, vol.85, pp.257-273, 2015.

S. M. Jin, M. Lazarou, C. Wang, L. A. Kane, D. P. Narendra et al., Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL, J. Cell Biol, vol.191, pp.933-942, 2010.

E. Deas, H. Plun-favreau, S. Gandhi, H. Desmond, S. Kjaer et al., PINK1 cleavage at position A103 by the mitochondrial protease PARL, Hum. Mol. Genet, vol.20, pp.867-879, 2011.

C. Meissner, H. Lorenz, A. Weihofen, D. J. Selkoe, and M. K. Lemberg, The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking, J. Neurochem, vol.117, pp.856-867, 2011.

A. W. Greene, K. Grenier, M. A. Aguileta, S. Muise, R. Farazifard et al., Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment, EMBO Rep, vol.13, pp.378-385, 2012.

J. W. Harper, A. Ordureau, and J. Heo, Building and decoding ubiquitin chains for mitophagy, Nat. Rev. Mol. Cell Biol, vol.19, pp.93-108, 2018.

S. Sekine and R. J. Youle, PINK1 import regulation; a fine system to convey mitochondrial stress to the cytosol, BMC Biol, vol.16, issue.2, 2018.

M. Lazarou, S. M. Jin, L. A. Kane, and R. J. Youle, Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin, Dev. Cell, vol.22, pp.320-333, 2012.

K. Okatsu, M. Uno, F. Koyano, E. Go, M. Kimura et al., A dimeric PINK1-containing complex on depolarized mitochondria stimulates Parkin recruitment, J. Biol. Chem, vol.288, pp.36372-36384, 2013.

S. A. Hasson, L. A. Kane, K. Yamano, C. Huang, D. A. Sliter et al., High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy, Nature, vol.504, pp.291-295, 2013.

F. Koyano, K. Okatsu, H. Kosako, Y. Tamura, E. Go et al., Ubiquitin is phosphorylated by PINK1 to activate parkin, Nature, vol.510, pp.162-166, 2014.

N. C. Chan, A. M. Salazar, A. H. Pham, M. J. Sweredoski, N. J. Kolawa et al., Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy, Hum. Mol. Genet, vol.20, pp.1726-1737, 2011.

S. R. Yoshii, C. Kishi, N. Ishihara, and N. Mizushima, Parkin Mediates Proteasome-dependent Protein Degradation and Rupture of the Outer Mitochondrial Membrane, J. Biol. Chem, vol.286, 2011.

G. Gong, M. Song, G. Csordas, D. P. Kelly, S. J. Matkovich et al., Parkin-mediated mitophagy directs perinatal cardiac metabolic maturation in mice, Science, vol.350, p.2459, 2015.

A. Ordureau, J. A. Paulo, W. Zhang, T. Ahfeldt, J. Zhang et al., Dynamics of PARKIN-Dependent Mitochondrial Ubiquitylation in Induced Neurons and Model Systems Revealed by Digital Snapshot Proteomics, Mol. Cell, vol.70, pp.211-227, 2018.

C. M. Rose, M. Isasa, A. Ordureau, M. A. Prado, S. A. Beausoleil et al., Highly Multiplexed Quantitative Mass Spectrometry Analysis of Ubiquitylomes, Cell Syst, vol.3, pp.395-403, 2016.

S. A. Sarraf, M. Raman, V. Guarani-pereira, M. E. Sowa, E. L. Huttlin et al., Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization, Nature, vol.496, pp.372-376, 2013.

S. Geisler, K. M. Holmström, D. Skujat, F. C. Fiesel, O. C. Rothfuss et al., PINK1/Parkinmediated mitophagy is dependent on VDAC1 and p62/SQSTM1, Nat. Cell Biol, vol.12, pp.119-131, 2010.

D. P. Narendra and R. J. Youle, Targeting Mitochondrial Dysfunction: Role for PINK1 and Parkin in Mitochondrial Quality Control, Antioxid. Redox Signal, vol.14, pp.1929-1938, 2011.

K. Palikaras, E. Lionaki, and N. Tavernarakis, Mechanisms of mitophagy in cellular homeostasis, physiology and pathology, Nat. Cell Biol, vol.20, pp.1013-1022, 2018.

A. Khaminets, C. Behl, and I. Dikic, Ubiquitin-Dependent and Independent Signals In Selective Autophagy, Trends Cell Biol, vol.26, pp.6-16, 2016.

Y. Wei, W. Chiang, R. Sumpter, P. Mishra, and B. Levine, Prohibitin 2 Is an Inner Mitochondrial Membrane Mitophagy Receptor, vol.168, pp.224-238, 2017.

T. G. Mcwilliams, A. R. Prescott, G. F. Allen, J. Tamjar, M. J. Munson et al., mito-QC illuminates mitophagy and mitochondrial architecture in vivo, J. Cell Biol, vol.214, pp.333-345, 2016.

N. Sun, J. Yun, J. Liu, D. Malide, C. Liu et al., Measuring In Vivo Mitophagy. Mol. Cell, vol.60, pp.685-696, 2015.

D. Glick, W. Zhang, M. Beaton, G. Marsboom, M. Gruber et al., BNip3 Regulates Mitochondrial Function and Lipid Metabolism in the Liver, Mol. Cell. Biol, vol.32, pp.2570-2584, 2012.

M. Yasuda, J. W. Han, C. A. Dionne, J. M. Boyd, and G. Chinnadurai, BNIP3alpha: A human homolog of mitochondrial proapoptotic protein BNIP3, Cancer Res, vol.59, pp.533-537, 1999.

L. Liu, D. Feng, G. Chen, M. Chen, Q. Zheng et al., Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells, Nat. Cell Biol, vol.14, pp.177-185, 2012.

T. Kanki, K. Wang, Y. Cao, M. Baba, and D. J. Klionsky, Atg32 is a mitochondrial protein that confers selectivity during mitophagy, Dev. Cell, vol.17, pp.98-109, 2009.

A. J. Whitworth and L. J. Pallanck, PINK1/Parkin mitophagy and neurodegeneration-what do we really know in vivo?, Curr. Opin. Genet. Dev, vol.44, pp.47-53, 2017.

H. Sandoval, P. Thiagarajan, S. K. Dasgupta, A. Schumacher, J. T. Prchal et al., Essential role for Nix in autophagic maturation of erythroid cells, Nature, vol.454, pp.232-235, 2008.

R. L. Schweers, J. Zhang, M. S. Randall, M. R. Loyd, W. Li et al., NIX is required for programmed mitochondrial clearance during reticulocyte maturation, Proc. Natl. Acad. Sci, vol.104, pp.19500-19505, 2007.

A. Rawi, S. Louvet-vallée, S. Djeddi, A. Sachse, M. Culetto et al., Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission, Science, vol.334, pp.1144-1147, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02373530

S. Melser, E. H. Chatelain, J. Lavie, W. Mahfouf, C. Jose et al., Rheb Regulates Mitophagy Induced by Mitochondrial Energetic Status. Cell Metab, vol.17, pp.719-730, 2013.

R. A. Gottlieb and D. Bernstein, Mitochondria shape cardiac metabolism, Science, vol.350, pp.1162-1163, 2015.

K. R. Pryde, H. L. Smith, K. Chau, and A. H. Schapira, PINK1 disables the anti-fission machinery to segregate damaged mitochondria for mitophagy, J. Cell Biol, vol.213, pp.163-171, 2016.

G. Twig and O. S. Shirihai, The Interplay between Mitochondrial Dynamics and Mitophagy, Antioxid. Redox Signal, vol.14, pp.1939-1951, 2011.

K. Yamano, A. I. Fogel, C. Wang, A. M. Van-der-bliek, and R. J. Youle, Mitochondrial Rab GAPs govern autophagosome biogenesis during mitophagy, vol.3, p.1612, 2014.

T. P. Ashford and K. R. Porter, Cytoplasmic components in hepatic cell lysosomes, J. Cell Biol, vol.12, pp.198-202, 1962.

A. Kuma, M. Matsui, N. Mizushima, A. Lc3, and . Marker, Can be incorporated into Protein Aggregates Independent of Autophagy: Caution in the Interpretation of LC3 Localization, Autophagy, vol.3, pp.323-328, 2007.

R. K. Dagda, S. J. Cherra, S. M. Kulich, A. Tandon, D. Park et al., Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission, J. Biol. Chem, vol.284, pp.13843-13855, 2009.

N. Mizushima, T. Yoshimori, and B. Levine, Methods in mammalian autophagy research, Cell, vol.140, pp.313-326, 2010.

J. A. Williams, K. Zhao, S. Jin, and W. Ding, New methods for monitoring mitochondrial biogenesis and mitophagy in vitro and in vivo, Exp. Biol. Med, vol.242, pp.781-787, 2017.

N. J. Dolman, K. M. Chambers, B. Mandavilli, R. H. Batchelor, and M. S. Janes, Tools and techniques to measure mitophagy using fluorescence microscopy, Autophagy, vol.9, pp.1653-1662, 2013.

I. Kim and J. J. Lemasters, Mitophagy selectively degrades individual damaged mitochondria after photoirradiation, Antioxid. Redox Signal, vol.14, pp.1919-1928, 2011.

S. P. Elmore, T. Qian, S. F. Grissom, and J. J. Lemasters, The mitochondrial permeability transition initiates autophagy in rat hepatocytes, FASEB J, vol.15, pp.2286-2287, 2001.

L. Devorkin and S. M. Gorski, LysoTracker Staining to Aid in Monitoring Autophagy in Drosophila, Cold Spring Harb. Protoc, p.80325, 2014.

A. Pierzy?ska-mach, P. A. Janowski, and J. W. Dobrucki, Evaluation of acridine orange, LysoTracker Red, and quinacrine as fluorescent probes for long-term tracking of acidic vesicles, Cytom. Part A, vol.85, pp.729-737, 2014.

S. Kimura, T. Noda, and T. Yoshimori, Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3, Autophagy, vol.3, pp.452-460, 2007.

G. F. Allen, R. Toth, J. James, and I. G. Ganley, Loss of iron triggers PINK1/Parkin-independent mitophagy, EMBO Rep, vol.14, pp.1127-1135, 2013.

S. Kim, M. Khan, J. Quan, A. Till, S. Subramani et al., Hepatitis B virus disrupts mitochondrial dynamics: Induces fission and mitophagy to attenuate apoptosis, PLoS Pathog, issue.9, p.1003722, 2013.

H. Katayama, T. Kogure, N. Mizushima, T. Yoshimori, and A. Miyawaki, A sensitive and quantitative technique for detecting autophagic events based on lysosomal delivery, Chem. Biol, vol.18, pp.1042-1052, 2011.

B. Bingol, J. S. Tea, L. Phu, M. Reichelt, C. E. Bakalarski et al., The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy, Nature, vol.510, pp.370-375, 2014.

A. W. Ferree, K. Trudeau, E. Zik, I. Y. Benador, G. Twig et al., MitoTimer probe reveals the impact of autophagy, fusion, and motility on subcellular distribution of young and old mitochondrial protein and on relative mitochondrial protein age, Autophagy, vol.9, pp.1887-1896, 2013.

G. Hernandez, C. Thornton, A. Stotland, D. Lui, J. Sin et al., MitoTimer: A novel tool for monitoring mitochondrial turnover, Autophagy, vol.9, pp.1852-1861, 2013.

A. M. Jones, G. Grossmann, J. Å. Danielson, D. Sosso, L. Chen et al., In vivo biochemistry: Applications for small molecule biosensors in plant biology, Curr. Opin. Plant Biol, vol.16, pp.389-395, 2013.