P. Qiu, T. Zhang, Y. Qiu, X. Shi, and L. Chen, Sulfide bornite thermoelectric material: a natural mineral with ultralow thermal conductivity, Energy Environ. Sci, vol.7, pp.4000-4006, 2014.

G. Guélou, A. V. Powell, and P. Vaqueiro, Ball milling as an effective route for the preparation of doped bornite: synthesis, stability and thermoelectric properties, J. Mater. Chem. C, vol.3, pp.10624-10629, 2015.

P. Kumar, V. Barbier, T. Lemoine, P. Raveau, B. Nassif et al., The crucial role of selenium for sulphur substitution in the structural transitions and thermoelectric properties of Cu 5 FeS 4 bornite, vol.46, pp.2174-2183, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01470480

S. O. Long, A. V. Powell, P. Vaqueiro, and S. Hull, High thermoelectric performance of bornite through control of the Cu(II) content and vacancy concentration, Chem. Mater, vol.30, pp.456-464, 2018.

A. Zhang, B. Zhang, W. Lu, D. Xie, H. Ou et al., Twin engineering in solutionsynthesized nonstoichiometric Cu 5 FeS 4 icosahedral nanoparticles for enhanced thermoelectric performance, Adv. Funct. Mater, vol.28, p.1705117, 2018.

A. Ostovari-moghaddam, A. Shokuhfar, and A. Cabot, Thermoelectric properties of nanostructured bornite Cu 5-x Co x FeS 4 synthesized by high energy ball milling, J. Alloys Compd, vol.750, pp.1-7, 2018.

A. Ostovari-moghaddam, A. Shokuhfar, P. Guardia, Y. Zhang, and A. Cabot, Substantial role of doping in the thermoelectric and hardness properties of nanostructured bornite, Cu 5 FeS 4, J. Alloys Compd, vol.773, pp.1064-1074, 2019.

T. Barbier, D. Berthebaud, R. Frésard, O. I. Lebedev, E. Guilmeau et al., Structural and thermoelectric properties of n-type isocubanite CuFe 2 S 3, Inorg. Chem. Front, vol.4, pp.424-432, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02175386

K. Chen, B. Du, N. Bonini, C. Weber, H. Yan et al., Theory-guided synthesis of an eco-friendly and low-cost copper based sulfide thermoelectric material, J. Phys. Chem. C, vol.120, pp.27135-27140, 2016.

K. Chen, C. Di-paola, B. Du, R. Zhang, S. Laricchia et al., Enhanced thermoelectric performance of Sn-doped Cu 3 SbS 4, J. Mater. Chem, vol.6, pp.8546-8552, 2018.

Q. Tan, W. Sun, Z. Li, and J. Li, Enhanced thermoelectric properties of earth-abundant Cu 2 SnS 3 via In doping effect, J. Alloys Compd, vol.672, pp.558-563, 2016.

Y. Shen, C. Li, R. Huang, R. Tian, Y. Ye et al., Eco-friendly p-type Cu 2 SnS 3 thermoelectric material: crystal structure and transport properties, Sci. Rep, vol.6, p.32501, 2016.

H. Zhao, X. Xu, C. Li, R. Tian, R. Zhang et al., Cobalt-doping in Cu 2 SnS 3 : enhanced thermoelectric performance by synergy of phase transition and band structure modification, J. Mater. Chem. A, vol.5, pp.23267-23275, 2017.

Y. Goto, F. Naito, R. Sato, K. Yoshiyasu, T. Itoh et al., Enhanced thermoelectric figure of merit in stannite? kuramite solid solutions Cu 2+x Fe 1 ?x SnS 4 ?y (x = 0 ?1) with anisotropy lowering, Inorg. Chem, vol.52, pp.9861-9866, 2013.

Y. Yang, P. Ying, J. Wang, X. Liu, Z. Du et al., Enhancing the thermoelectric performance of Cu 3 SnS 4 -based solid solutions through coordination of the Seebeck coefficient and carrier concentration, J. Mater. Chem. A, vol.5, pp.18808-18815, 2017.

M. Liu, F. Huang, L. Chen, and I. Chen, A wideband-gap p-type thermoelectric material based on quaternary chalcogenides of Cu 2 ZnSnQ 4 (Q=S, Se), Appl. Phys. Lett, p.202103, 2009.

R. Zhang, K. Chen, B. Du, and M. J. Reece, Screening for Cu-S based thermoelectric materials using crystal structure features, J. Mater. Chem. A, vol.5, pp.5013-5019, 2017.

P. Kumar, V. Barbier, T. Caignaert, V. Raveau, B. Daou et al., Copper hyper-stoichiometry: the key for the optimization of thermoelectric properties in stannoidite Cu 8+x Fe 3?x Sn 2 S 12, J. Phys. Chem. C, vol.121, pp.16454-16461, 2017.

K. Suekuni, K. Tsuruta, T. Ariga, and M. Koyano, Thermoelectric properties of mineral tetrahedrites Cu 10 Tr 2 Sb 4 S 13 with low thermal conductivity, Appl. Phys. Express, vol.5, p.51201, 2012.

K. Suekuni, K. Tsuruta, M. Kunii, H. Nishiate, E. Nishibori et al., High-performance thermoelectric mineral Cu 12-x Ni x Sb 4 S 13 tetrahedrite, J. Appl. Phys, p.43712, 2013.

X. Lu, D. T. Morelli, Y. Xia, F. Zhou, V. Ozolins et al., High performance thermoelectricity in earthabundant compounds based on natural mineral tetrahedrites, Adv. Energy Mater, vol.3, pp.342-348, 2013.

X. Lu, D. T. Morelli, T. Barbier, P. Lemoine, S. Gascoin et al., Structural stability of the synthetic thermoelectric ternary and nickelsubstituted tetrahedrite phases, Phys. Chem. Chem. Phys, vol.15, issue.23, pp.253-262, 2013.

X. Lu, D. T. Morelli, Y. Xia, and V. Ozolins, Increasing the thermoelectric figure of merit of tetrahedrites by co-doping with nickel and zinc, Chem. Mater, vol.27, pp.408-413, 2015.

T. Barbier, P. Lemoine, S. Martinet, M. Eriksson, M. Gilmas et al., Up-scaled synthesis process of sulphur-based thermoelectric materials, vol.6, pp.10044-10053, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02184702

Y. Bouyrie, S. Sassi, C. Candolfi, J. Vaney, A. Dauscher et al., Thermoelectric properties of double-substituted tetrahedrites Cu 12?x Co x Sb 4?y Te y S 13, J. Electron. Mater, vol.45, issue.27, pp.1926-1931, 2016.

P. Kumar, V. Paradis-fortin, L. Lemoine, P. Caignaert, V. Raveau et al., Designing a thermoelectric copper-rich sulfide from a natural mineral: synthetic germanite Cu 22 Fe 8 Ge 4 S 32, vol.56, pp.13376-13381, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01640116

P. Kumar, V. Paradis-fortin, L. Lemoine, P. Le-caër, G. Malaman et al., Crossover from germanite to renierite-type structures in Cu 22 ? x Zn x Fe 8 Ge 4 S 32 thermoelectric sulfides, ACS Appl. Energy Mater, vol.2, pp.7679-7689, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02354451

K. Suekuni, F. S. Kim, and T. Takabatake, Tunable electronic properties and low thermal conductivity in synthetic colusites Cu, p.26

. M-=-ge, ;. Sn, K. Suekuni, F. S. Kim, H. Nishiate et al., Structural analysis and thermoelectric properties of mechanically alloyed colusites, Takabatake, T. High-performance thermoelectric minerals: colusites Cu 26 V 2 M 6 S 32, vol.116, pp.7455-7463, 2014.

F. S. Kim, K. Suekuni, H. Nishiate, M. Ohta, H. I. Tanaka et al., Tuning the charge carrier density in the thermoelectric colusite, J. Appl. Phys, p.175105, 2016.

Y. Kikuchi, Y. Bouyrie, M. Ohta, K. Suekuni, M. Aihara et al., Vanadium-free colusites Cu 26 A 2 Sn 6 S 32 (A = Nb, Ta) for environmentally friendly thermoelectrics, J. Mater. Chem. A, 2016.

Y. Bouyrie, M. Ohta, K. Suekuni, Y. Kikuchi, P. Jood et al.,

. E-=-sn, Ge) using E-site non-stoichiometry, J. Mater. Chem. C, vol.5, pp.4174-4184, 2017.

C. Bourgès, Y. Bouyrie, A. R. Supka, R. Orabi, P. Lemoine et al., Highperformance thermoelectric bulk colusite by process controlled structural disordering, J. Am. Chem. Soc, vol.140, pp.2186-2195, 2018.

Y. Bouyrie, M. Ohta, K. Suekuni, P. Jood, and T. Takabatake, Addition of Co, Ni, Fe and their role in the thermoelectric properties of colusite Cu 26 Nb 2 Ge 6 S 32, J. Alloys Compd, vol.735, pp.1838-1845, 2018.

K. Suekuni, Y. Shimizu, E. Nishibori, H. Kasai, H. Saito et al., Atomic-scale phonon scatterers in thermoelectric colusites with a tetrahedral framework structure, J. Mater. Chem. A, vol.7, pp.228-235, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02274207

P. Kumar, V. Supka, A. R. Lemoine, P. Lebedev, O. I. Raveau et al., Power generation from the Cu 26 Nb 2 Ge 6 S 32 -based single thermoelectric element with Au diffusion barrier, Adv. Energy Mater, vol.9, issue.40, pp.5184-5192, 2019.

P. Kumar, V. Guélou, G. Lemoine, P. Raveau, B. Supka et al., Copper-rich thermoelectric sulfides: size-mismatch effect and chemical disorder in the, Angew. Chem. Int. Ed, vol.32, pp.15455-15463, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02274210

W. P. Binnie, M. J. Redman, and W. J. Mallio, On the preparation, properties, and structure of cuprous ammonium thiomolybdate, Inorg. Chem, vol.9, pp.1449-1452, 1970.

C. C. Raymond, P. K. Dorhout, and S. M. Miller, Crystal structure of dicaesium tetrathiomolybdate, Cs 2 MoS 4, Z. Kristallogr, p.775, 1995.

J. Ellermeier, C. Näther, and W. Bensch, Rb 2 MoS 4 . Acta Cryst. C, vol.55, pp.1748-1751, 1999.

M. Emirdag-eanes and J. A. Ibers, Crystal structure of dipotassium tetrathiomolybdate, K 2 MoS 4, Z. Kristallogr. New Cryst. Struct, vol.216, p.484, 2001.

K. Sasvári, The crystal structure of ammonium thiotungstate (NH 4 ) 2 WS 4, Acta Cryst, vol.16, pp.719-724, 1963.

D. C. Harris, A. C. Roberts, R. I. Thorpe, A. J. Criddle, C. J. Stanley et al., Can. Mineral, vol.22, pp.227-232, 1984.

E. A. Pruss, B. S. Snyder, and A. M. Stacy, A new layered ternary sulfide: formation of Cu 2 WS 4 by reaction of WS 4 2-and Cu + ions, Angew. Chem. Int. Ed. Engl, vol.32, pp.256-257, 1993.

J. Yao, J. A. Ibers, and . Dirubidium-tetrathiotungstate,

, Acta Cryst. E, vol.60, pp.10-11, 2004.

H. Putz, W. H. Paar, D. Topa, E. Makovicky, and A. C. Roberts,

. Catamarcaite, Cu 6 GeWS 8 , a new germanium sulfide mineral species from Capillitas, Catamarca, Argentina: description, paragenesis and crystal structure, Can. Mineral, vol.44, pp.1481-1497, 2006.

B. R. Srinivasan and C. Näther,

, Acta Cryst. E, vol.63, p.167, 2007.

W. Liu, C. Dong, X. Gu, Y. Liu, X. Qiu et al., The crystal structure of kiddcreekite solved using micro X-ray diffraction and the EPCryst program, Mineral. Mag, vol.78, pp.1517-1525, 2014.

J. Rodriguez-carvajal, T. Roisnel, and J. Rodriguez-carvajal, Recent advances in magnetic structure determination by neutron powder diffraction, Mater. Sci. Forum, vol.192, issue.54, pp.118-123, 1993.

O. V. Frank-kamenetskaya, I. V. Rozhdestvenskaya, and L. A. Yanulova, New data on the crystal structures of colusites and arsenosulvanites, J. Struct. Chem, vol.43, pp.89-100, 2002.

L. Nagard, N. Collin, G. Gorochov, and O. , Etude structurale et propriétés physiques de CuCrS 2, Mater. Res. Bull, vol.14, pp.1411-1417, 1979.

W. F. Kuhs, R. Nitsche, and K. Scheunemann, The argyrodites -a new family of tetrahedrally close-packed structures, Mat. Res. Bull, vol.14, pp.241-248, 1979.

M. I. Aliev, T. G. Dzhabrailov, D. G. Arasly, and R. N. Ragimov, Heat capacity and thermal diffusivity of Cu 8 GeSe 6 , Cu 8 SnS 6 , and Cu 8 GeS 6, Inorg. Mater, vol.25, pp.1015-1017, 1989.

L. D. Gulay, O. V. Parasyuk, and Y. E. Romanyuk, Preparation and crystal structure of the Cu 9 GeS 6-x (x = 0.579) compound, J. Alloys Compd, vol.333, pp.109-112, 2002.

W. H. Paar, A. C. Roberts, P. Berlepsch, T. Armbruster, D. Topa et al., 3 ) ?8 GeS 6 , a new mineral species from Capillitas, Catamarca, Argentina: description and crystal structure, Can. Mineral, vol.42, pp.1757-1769, 2004.

M. Onoda, X. A. Chen, K. Kato, A. Sato, H. Wada et al., The preparation and characterization of the solid solution series CuFe x Ge 1-x S 2 (0.5 < x < 1.0), J. Solid State Chem, vol.55, issue.62, pp.75-80, 1976.

L. M. De-chalbaud, G. Díaz-de-delgado, J. M. Delgado, A. E. Mora, and V. Sagredo, Synthesis and single-crystal structural study of Cu 2 GeS 3, Mat. Res. Bull, vol.32, pp.1371-1376, 1997.

X. Chen, M. Onoda, H. Wada, A. Sato, and H. Nozaki, Herbst-Irmer, R. Preparation, electrical properties, crystal structure, and electronic structures of Cu 4 GeS 4, J. Solid State Chem, vol.145, pp.204-211, 1999.

P. Vaqueiro, G. Guélou, A. Kaltzoglou, R. I. Smith, T. Barbier et al., The influence of mobile copper ions on the glass-like thermal conductivity of copper-rich tetrahedrites, Chem. Mater, vol.29, pp.4080-4090, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02175414