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Abstract: The P2Y12 receptor is a key player in platelet activation and a major target for antithrombotic
drugs. The beneficial effects of P2Y12 receptor antagonists might, however, not be restricted to the
primary and secondary prevention of arterial thrombosis. Indeed, it has been established that platelet
activation also has an essential role in inflammation. Additionally, nonplatelet P2Y12 receptors present
in immune cells and vascular smooth muscle cells might be effective players in the inflammatory
response. This review will investigate the biological and clinical impact of P2Y12 receptor inhibition
beyond its platelet-driven antithrombotic effects, focusing on its anti-inflammatory role. We will
discuss the potential molecular and cellular mechanisms of P2Y12-mediated inflammation, including
cytokine release, platelet–leukocyte interactions and neutrophil extracellular trap formation. Then
we will summarize the current evidence on the beneficial effects of P2Y12 antagonists during various
clinical inflammatory diseases, especially during sepsis, acute lung injury, asthma, atherosclerosis,
and cancer.

Keywords: platelets; P2Y12; inflammation; hemostasis; sepsis; cancer; leukocytes; antiplatelet agents;
asthma; atherosclerosis

1. Introduction

Nucleotides are universal extracellular signaling molecules, acting as intercellular or autocrine
messengers that can be passively released by injured cells or secreted by specific mechanisms. Among
their countless physiological or pathological functions, purinergic signaling can regulate hemostasis,
thrombosis, and inflammation through the costimulation of various cell types, including platelets,
leukocytes, endothelial, and vascular smooth muscle cells [1].

The specific plasma membrane receptors for nucleotides are called P2 receptors and are divided
into two subgroups: P2X ligand-gated ion channels and P2Y G-protein (guanine nucleotide-binding
protein)-coupled receptors. Eight P2Y receptors have been identified and divided according to their
preferred agonist: adenine nucleotides (ADP and ATP) for P2Y1, P2Y11, P2Y12, and P2Y13 receptors;
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uracil nucleotides (UDP and UTP) for P2Y4 and P2Y6; adenine and uracil nucleotides for P2Y2; and
UDP and UDP-glucose for P2Y14 [2–5].

Adenine nucleotide mediated platelet activation is a critical mechanism in both physiological
and pathological hemostasis (including thrombosis), and it involves three platelet P2 receptors (P2Y1,
P2Y12, and P2X1, the latter one being an ATP channel). Among the P2Y ADP receptors, P2Y12 is a
key receptor and the unique P2 target for clinically approved antiplatelet drugs (herein called P2Y12

inhibitors) [6].
Besides their hemostatic capacities, platelets play an emerging and significant role in regulating

inflammatory and immune response. Indeed, they are able to interact with immune cells through
membrane exposure of P-selectin and CD40 (cluster of differentiation 40) ligand, and to release
inflammatory mediators (cytokines, chemokines) [7,8]. Platelets are also involved in tumorigenesis
and in the modulation of tumor microenvironment [9]. Moreover, P2Y12 is expressed in other cell
types than platelets, including cancer, immune and vascular cells, and binding of ADP to P2Y12 might
activate leukocytes and dendritic cells [2].

Therefore, together with antithrombotic effects, P2Y12 inhibitors might also have a role in
modulation of inflammation.

After a brief description of P2Y12 function and its current clinical inhibitors, we will review the
effects of P2Y12 inhibition on molecular and cellular mechanisms of inflammation and the current
evidence for P2Y12 antagonism in clinical inflammatory diseases and syndromes.

2. P2Y12 Receptors

2.1. Structure of P2Y12 Receptors

The P2Y12 receptor was originally described as a platelet ADP receptor inhibited by thienopyridine
antiplatelet agents ticlopidine and clopidogrel. It was further identified by cloning in 2001 by Hollopeter
and Zhang and maps to chromosome 3q25.1 [10,11].

P2Y12 is a Gi-coupled seven-transmembrane domain receptor composed of 342 amino acids with a
molecular weight of 39kDa. Its structure consists of a seven-transmembrane (7-TM) bundle of α-helices
connected by three intracellular and three extracellular loops (EL), and a carboxy-terminal helix (H8)
that is parallel to the membrane bilayer on the cytoplasmic side [12]. It contains four extracellular
cysteines at positions 17, 97, 175, and 270 that form two disulfide bridges (between the N-terminal
domain and EL3 and between EL1 and EL2) which are important sites for receptor expression and
potential target for active metabolites of thienopyridines [2,13,14].

2.2. Expression of P2Y12 Receptor

The P2Y12 receptor was originally sought to be exclusively expressed on platelets, with about
400 copies of the P2Y12 receptor per cell, and to a lesser extent in subregions of the brain [11,15].
However, further studies demonstrated that P2Y12 has a wider tissue distribution, being expressed and
functional in microglial cells [16], vascular smooth muscle cells [17,18], and on several immune cells
including dendritic cells [19], mast cells [20], eosinophils [21], monocytes [22], lymphocytes [23,24] and
macrophages [25]. The P2Y12 receptor expression has been also recently reported in osteoclasts [26] as
well as in brain and breast cancer cell lines [27]. P2Y12 is not expressed by human endothelial cells of
aortic, cerebral or cardiac origin [28]. Still, the expression and function of P2Y12 in other cell types
remain poorly investigated. Although P2Y12 is expressed on the plasma membrane of resting platelets,
an inducible pool of P2Y12 can also be exposed upon platelet activation by strong agonists [29].

2.3. Role of P2Y12 Rreceptor in Platelet Activation Pathways

Among extracellular nucleotides, ADP (adenosine 5′-diphosphate) plays a key role in platelet
function and thrombus formation (Figure 1). It is a weak platelet agonist as it only induces reversible
responses, including shape change and reversible aggregation. Platelets express two G protein-coupled
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receptors for ADP: P2Y1, which is coupled to Gq (G-protein q), and P2Y12, which is coupled to Gi
(G-protein i) [3]. Despite the fact that ADP alone is not able to induce the release of platelet dense
granules, binding of ADP to its platelet receptors amplifies and sustains the secretion and aggregation
induced by other strong agonists [3]. Hence, P2Y12 plays an important role in the stabilization of
platelet aggregates induced by other agonists such as thrombin and thromboxane A2 (TXA2), as well
as in thrombogenesis in vivo [3,13,18,30,31]. This central position explains both the clinical benefit of
P2Y12 antagonists and the bleeding diathesis observed in P2Y12 deficient patients [32,33].
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Figure 1. Schematic illustration of the platelet P2-mediated ADP signaling pathway and its role in
platelet activation. ADP can induce platelet activation by interacting with two G-coupled platelet
receptors, P2Y1 and P2Y12, and contributes to the stabilization of platelet aggregation induced by other
strong agonists such as thrombin and TXA2. ADP binding to P2Y1 induces a mobilization of calcium
ions through the stimulation of phospholipase C and therefore initiates early reversible aggregation.
ADP binding to P2Y12 induces PI3K activation through the recruitment of βγ subunits of Gi and
inhibition of adenylate cyclase through the recruitment of αi subunit, therefore decreasing cAMP
levels and leading to impaired PKA activation. These pathways ultimately lead to platelet activation,
αIIbβ3 activation and stabilization of platelet aggregates. AC: adenylate cyclase; ADP: adenosine
diphosphate; ATP: adenosine triphosphate; PI3K: phosphoinositide-3-kinase; PKA: protein kinase A;
PLC: phospholipase C; VASP: vasodilator-stimulated phosphoprotein.

Concomitant stimulation of P2Y1 and P2Y12 receptors by ADP is required to generate normal
ADP-induced platelet aggregation [2,4]. Binding of ADP to P2Y1 initiates shape change and early
reversible aggregation by mobilization of calcium ions from internal stores through the stimulation
of phospholipase C and formation of inositol 1,4,5-trisphosphate (IP3) [5,13,34]. P2Y12 activates
a G αi2 G protein subtype that mediates the inhibition of adenylate cyclase and therefore cyclic
adenosine monophosphate (cAMP) production, leading to impaired protein kinase A (PKA) activation
and a subsequent inhibition of downstream effectors such as vasodilator-stimulated phosphoprotein
(VASP) [5,13,35]. This cAMP inhibition is not sufficient to induce platelet aggregation by itself
but can promote it [36]. VASP phosphorylation state can be used to monitor the effects of anti
P2Y12 therapy [37,38]. Binding of ADP to P2Y12 also induces an activation of two isoforms of
phosphoinositide-3-kinase-(PI3K) - p110β and p110γ - through the recruitment of βγ subunits of
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Gi, which is critical for integrin αIIbβ3 (GpIIbIIIa) activation and stabilization of platelet aggregates,
especially induced by thrombin or TXA2 [13,39–42]. This PI3K activation also amplifies platelet
secretion induced by other agonists [13,43]. Finally, P2Y12 supports thrombin generation by
amplifying membrane exposition of phosphatidylserine, platelet-derived microparticle formation
and collagen-induced exposure of tissue factor (TF). Moreover, it contributes to leukocyte activation
induced by surface P-selectin exposure and formation of platelet-leukocyte aggregates [13,44–48].
Formation of coated-platelets—which are a subpopulation of platelets characterized by surface retention
of procoagulant proteins, expression of phosphatidylserine and strong prothrombinase activity—is
dependent on ADP-induced P2Y12 activation [49–51].

2.4. Role of Non-Platelet P2Y12 Receptors

Vascular smooth muscle cells (VSMCs) play a key role in the physiological functions of blood
vessels, such as vasoconstriction, vasodilatation and extracellular matrix production. They are also
involved in the pathogenesis of vascular diseases, especially atherosclerosis, vascular inflammation and
restenosis following angioplasty [52]. P2Y12 receptor expression and function in ADP-induced vessel
contraction was first described in human internal mammary artery SMCs in 2004 [18]. Activation of
P2Y12 is thought to induce an inflammatory state in VSMCs and correlates with atherosclerotic plaque
instability [17,52–54]. It is associated with increased monocyte chemoattractant protein 1 (MCP-1)
expression and monocyte adhesion [54]. P2Y12 is also implicated in the migration VSMCs through
cAMP/PKA signaling pathway associated with actin disassembly and therefore an increase in VSMC
motility and migration [55].

P2Y12 is also functionally expressed in microglial cells and can play a role in their activation [16]
and in microglia-neuron communications and microglial neuroprotection [56]. Thus, as microglial cells
are the primary innate immune cells of the brain and play an important role in the pathophysiology of
many brain-based conditions, an implication of P2Y12 may be expected in various diseases including
multiple sclerosis, Alzheimer’s disease, traumatic brain and spinal cord injury, and brain cancers [55].

Dendritic cells (DC) are considered the most efficient antigen presenting cells and are able to
regulate adaptive immunity by inducing naïve T cell activation and effector differentiation [57]. P2Y12

receptor is expressed in murine DCs and its activation enhances specific T cell activation by increasing
antigen endocytosis [19]. P2Y12 is also expressed in human DCs and it has been demonstrated
that inhibition of P2Y12 mediated PI3K activation induces an immunosuppressive effect on DCs by
decreasing antigen uptake [58].

To date, only few studies have evaluated the role of P2Y12 receptor in the purinergic signaling in
leukocytes. High amounts of the P2Y12 receptor mRNA were previously described in lymphocytes as
well as in CD34+ progenitor cells [24]. In a clinical study involving cardiologic patients, Diehl et al.
showed that P2Y12 mRNA was expressed in leukocytes obtained from leukapheresis and that P2Y12

inhibition by clopidogrel decreased leukocyte CD11b (Mac-1) expression [59]. The P2Y12 expression
was also reported in human eosinophils in which P2Y12 activation induced the release of eosinophil
peroxidase [21] that could be prevented by clopidogrel [60]. Activation of P2Y12 in macrophages
induced cell spreading with formation of lamellipodia, and P2Y12 inhibition alleviated chemotaxis [25].
Micklewright et al. demonstrated in human THP-1 monocytic cells that P2Y12 was expressed and
positively regulated P2Y6-mediated intracellular Ca2+ signaling through suppression of adenylate
cyclase activity [22]. Finally, Vemulapalli et al. recently showed that functional P2Y12 was expressed
by T lymphocytes and that it exerted effects on biological responses of T cells when stimulated [23].

Taken together, these results suggest that P2Y12 inhibitors might target immune cell function and
contribute to the modulation of inflammatory and immune responses.

Even though P2Y12 inhibitors are being explored as potential anti-cancer agents, expression of
P2Y12 receptor in cancer cells has only been reported by a few studies. P2Y12 has been found in glioma
and astrocytoma cells [61,62]. P2Y12 expression has been also described in breast cancer cell lines
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and was upregulated by cell treatment with cisplatin [63]. In those cells, co-administration of P2Y12

inhibitor with cisplatin resulted in significantly higher cytotoxic response [63].

3. P2Y12 Antagonists

3.1. Thienopyridines

As previously described, P2Y12 activation by ADP has a fundamental role in thrombus formation
and stabilization. Hence, antiplatelet agents inhibiting P2Y12 form a cornerstone of therapy for
patients at risk of major adverse cardiovascular events (MACE), especially those with acute coronary
syndrome undergoing percutaneous coronary intervention, as well as in the secondary prevention of
cardiovascular events [33]. Besides their antithrombotic benefits, P2Y12 inhibitors also carry a bleeding
risk, in both procedural and non-procedural settings [64–66].

Pharmacological description of P2Y12 inhibitors is essential to better understand their potential role
in the modulation of inflammation, whether by a platelet dependent and/or an independent mechanism.

The P2Y12 inhibitors involve two classes of drugs: the thienotetrahydropyridines or
thienopyridines (clopidogrel, prasugrel, and ticlopidine) and the nucleoside–nucleotide derivatives
(cangrelor and ticagrelor) [33,67–69]. Pharmacological properties of P2Y12 inhibitors are summarized
in Table 1.

Table 1. Pharmacological properties of P2Y12 receptor inhibitors.

Drug Ticlopidine Clopidogrel Prasugrel Ticagrelor Cangrelor

Target P2Y12 P2Y12 P2Y12
P2Y12
ENT-1 P2Y12

P2Y12 receptor
binding Irreversible Irreversible Irreversible Reversible Reversible

Route of
administration Oral Oral Oral Oral Intravenous

Metabolism Prodrug
CYP450

Prodrug
Esterase
CYP450

Prodrug
Intestinal
Esterase
CYP450

Direct-Acting
and CYP450

Direct-Acting
Dephosphorylation

Time to maximum
IPA 1 3–4 days 4–5 h 2–4h 2–4 h 2 min

Steady-state IPA 2 20–30% 33–64% 43–73% 82–95% >80%

Offset of action 3 11–13 days 5–7 days 7–10 days 3–5 days 30–60 min

CYP450: cytochrome P450; IPA: inhibition of platelet aggregation; 1 after a loading dose; 2 percentage inhibition of
platelet aggregation measured by light transmission aggregometry; 3 based on return of platelet aggregation and/or
bleeding time to baseline values; [67–76].

Thienopyridines are orally administered inactive prodrugs that develop their antiplatelet effects
only after in vivo metabolism to active metabolites [6]. Active metabolites of thienopyridines have a
very short half-life and selectively interact with P2Y12 by forming a disulfide bond with cysteine-97
and then irreversibly inhibit ADP-induced activation [6]. Consequently, the inhibitory effect of
thienopyridines on platelets lasts for the lifespan of a circulating platelet, which is 8 to 12 days on
average [6].

The active metabolites of thienopyridines, and particularly for clopidogrel, are produced by
a complex multistep hepatic cytochrome P450 (CYP450) dependent activation [6,77]. Although
clopidogrel was shown to exhibit a beneficial effect in the prevention of MACE, it suffered from
many drawbacks including slow onset of action, high variability of response, drug resistance
due to CYP450 polymorphisms, moderate inhibition of platelet aggregation (33–64%) and drug
interactions [6,67,68,77,78]. This led to the development of third generation thienopyridine prasugrel.
Unlike ticlopidine and clopidogrel, prasugrel is first metabolized by an intestinal esterase and then
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undergoes a single step CYP450 dependent activation [6,79]. This allows a faster onset of action, more
potent inhibition of platelet aggregation (50–80%), fewer resistance and drug interactions [68,77,80,81].
Consequently, prasugrel is associated with a higher bleeding risk [67].

3.2. Direct P2Y12 Inhibitors

By contrast, several reversible direct-acting P2Y12 receptor antagonists were developed
using adenine-nucleotides (ADP or ATP) as the primary structure, that do not require hepatic
metabolism [6,33,67–69]. Altogether, this pharmacological approach allows a faster, more potent and
more predictable platelet inhibitory effect than thienopyridines [6,33].

Ticagrelor is an oral direct-acting P2Y12 inhibitor belonging to the cyclopentyl-triazolo-pyrimidines
class. It has a rapid onset of action (2h) and produces a dose-dependent and important inhibition
of platelet aggregation (60–90%) [68,71,73]. However, whether ticagrelor exerts a competitive or
noncompetitive inhibition of ADP-induced P2Y12 activation is still debated [82,83]. Ticagrelor has one
active metabolite (AR–C124910XX) produced by hepatic metabolism, which is at least equipotent and
accounts for a third of its antiplatelet effects [73,84]. Even if the offset of action is significantly faster
than prasugrel, the more potent platelet inhibitory effect induces a rate of offset still equivalent to
clopidogrel, with platelet aggregation returning to pretreatment values after 5 days [68,71].

Ticagrelor exhibits PY12-independent pleiotropic effects. In addition to anti-P2Y12 activity, it has
been shown to inhibit equilibrative nucleoside transporter 1 (ENT-1) which is a ubiquitous membrane
transport protein, notably responsible for adenine uptake by erythrocytes and platelets [85–87].
Ticagrelor inhibits adenine uptake in vitro, inducing increased biological effect of exogenous adenosine
and increased plasma levels and biological effects of endogenous adenosine [87]. High plasma levels of
adenosine can induce platelet inhibition and coronary vasodilatation, reduce inflammatory response
and improve ischemia/reperfusion injuries [87]. Thus, ENT-1 inhibition by ticagrelor may account for
some of its biological effect, including inhibition of platelet activation. However, ticagrelor-induced
increase in adenosine plasma levels in vivo remains very controversial [87–89].

It was also established that, together with an inhibition of platelet ENT1, ticagrelor can act as an
inverse agonist at the P2Y12 receptor [86]. This inverse agonist effect was further investigated in the
study of Garcia, supporting a new concept of P2Y12 receptor constitutive Gi/o-dependent signaling [90].
This effect was inhibited by ticagrelor but not by the thienopyridine inhibitors and led to an increase
of cAMP-dependent signaling pathway compared to resting condition [90]. Moreover, Reiner et al.
showed that ticagrelor exhibited endothelial-specific antithrombotic properties by reducing tissue
factor expression and activity, independently of P2Y12 and ENT-1 [28]. Finally, a recent study by
Lancellotti et al. demonstrated that ticagrelor had a bactericidal activity against antibiotic-resistant
gram-positive bacteria in vitro and inhibited biofilm growth and dissemination of bacteria on a mouse
model of implanted Staphylococcus aureus–preinfected disks [91].

Cangrelor is the only intravenous P2Y12 inhibitor. It is a direct-acting ATP analogue that selectively
and reversibly binds to the P2Y12 receptor in a dose-dependent manner, without requiring metabolism.
It achieves a high inhibition of platelet aggregation (>80%) with a rapid onset of action (2 min) and a
very fast offset of action (30 to 60 min) due to a half-life of 3 to 6 minutes [76]. It is therefore a therapeutic
option for patients with coronary artery disease (CAD) undergoing percutaneous coronary intervention
(PCI), and to maintain P2Y12 inhibition when oral therapy is interrupted for any reason [92,93].

4. Effects of P2Y12 Inhibitors on Inflammation: Possible Molecular and Cellular Mechanisms

As described above, ADP-mediated activation of P2Y12 seems to be a common activating pathway
in many inflammatory and immune cell types including platelets, leukocytes and dendritic cells.

Hemostasis and inflammation are intimately linked, inducing and amplifying each other and
this interconnection contributes to many pathological situations including sepsis, acute lung injury,
autoimmune diseases, tumorigenesis and metastasis.
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Hence, P2Y12 inhibitors might modulate inflammation through many different cellular and
molecular mechanisms, summarized in Figure 2 and further detailed in this section.
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Figure 2. Schematic overview of the role of platelet P2Y12 activation in inflammation. ADP binding
to P2Y12 initiates platelet activation and amplifies granule secretion and aggregation induced by
ADP-mediated P2Y1 stimulation and by strong agonists such as thrombin (PAR-1 and PAR-4 receptors)
and TXA2 (TP receptor). Activated platelets release alpha and dense granules contents, including
cytokines, chemokines, coagulation factors and platelet agonists. Cytokines, chemokines and soluble
CD40 ligand (sCD40L) can recruit and activate leukocytes, especially neutrophils and monocytes.
Expression of P-selectin and CD40L at the surface of activated platelets allow interaction between
platelets and leukocytes which is a critical step in platelet-mediated inflammation. P-selectin cross-links
platelets and leukocytes through its corresponding ligand P-selectin glycoprotein ligand-1 (PSGL-1)
present on monocytes and neutrophils. Platelet-leukocyte aggregates are further stabilized by numerous
additional receptor/ligand pairs, especially leukocyte Mac-1 that recognizes platelet CD40L and
fibrinogen (Fg) bound to platelet αIIbβ3. Activation by platelet interaction or soluble mediators
stimulates monocyte cytokine and chemokine production, expression of tissue factor and thrombin
generation. Platelet-bound neutrophils produce inflammatory mediators including reactive oxygen
species (ROS), and release neutrophil extracellular traps (NETs) that play a critical role in many
inflammatory conditions, especially sepsis-induced organ injuries, autoimmunity, tumorigenesis
and metastasis.

4.1. Thrombin Generation

Thrombin generation is a critical step during in vivo thrombogenesis that initiates the formation
of fibrin clots and platelet activation. Besides, thrombin can mediate direct effects on inflammatory and
immune cells through activation of protease-activated receptors (PARs), and notably PAR-1 [94,95].
Thrombin has been shown to induce the secretion of proinflammatory cytokines interleukin-1 (IL-1),
interleukin-6 (IL-6), tumor necrosis factor α (TNFα), and monocyte chemotactic protein MCP-1 from
different cell types including vascular endothelial cells and monocytes [96–98]. It also enhances
angiogenesis by stimulating the expression of angiogenic growth factors including platelet derived
growth factor (PDGF) and vascular endothelial growth factor (VEGF) [99,100]. Finally, thrombin
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has been shown to support T-cell proliferation and to induce leukocyte recruitment through PAR-1
activation [94,97].

Interplay between thrombin generation and inflammation involves positive feedback as leukocyte
activation can also trigger thrombin generation, mainly through the release of neutrophil extracellular
traps (NETs) and the expression of tissue factor by monocytes, macrophages and leukocyte-derived
microparticles [95,101].

As described above, P2Y12 plays a role in thrombin generation and in thrombus formation in vitro.
Accordingly, P2Y12 antagonism has been shown to inhibit thrombin generation through the decreased
formation of coated-platelet in vitro and in vivo [50,51,102,103]. Clopidogrel can reduce ex vivo
thrombin generation triggered by low concentrations of TF in rodent platelet rich plasma [104]. In a
murine experimental endotoxemic model, clopidogrel was recently shown to reduce TF expression on
leukocytes [105]. Finally, ticagrelor inhibited TF expression and activity in human aortic endothelial
cells, independently of P2Y12 and ENT-1, and decreased thrombosis and endothelial TF expression in a
photochemical mouse model of arterial thrombosis [28].

4.2. Release of Inflammatory Mediators

Inflammatory mediators, including cytokines, chemokines and growth factors are key modulators
of acute and chronic inflammatory processes. Most of them, including IL-1, IL-6, IL-8 and TNFα are
essentially produced by macrophages, monocytes and lymphocytes. They play a critical role in the
positive feedback between hemostasis and inflammation [95,106]. Indeed, they induce proliferation,
activation and recruitment of leukocytes, but also TF expression on cell surface of mononuclear and
endothelial cells, as well as platelet activation [95,106–108].

Upon activation, platelets secrete a great amount of soluble mediators from their granules, with
potent procoagulant and proinflammatory effects [109,110]. Cytokines and chemokines released by
platelets include IL-1β, CD40L, platelet factor 4 (PF4, CXCL4), RANTES (CCL5), βTG (CXCL7), and
IL-8 (CXCL8) [106,109,110]. These mediators play an important role in paracrine activation of platelets
and in immune cell activation, proliferation and chemotaxis [106]. Notably, soluble CD40L activates
platelets, induces IL-6 of and monocyte chemoattractant protein (MCP-1) secretion and enhances TF
expression by monocytes, leading to increased thrombin generation [111,112].

P2Y12 inhibition by clopidogrel or by gene knockout in murine models of abdominal sepsis or
lipopolysaccharide (LPS)-induced inflammation has been shown to decrease proinflammatory mediator
levels in plasma, notably IL-6, TNFα, CCL4 (MIP-1β) and IL-1β [48,105,113]. This is consistent with
the reduction in IL-6 and TNFα levels, upon clopidogrel treatment, in a rat model of LPS-induced
inflammation [114]. In a human experimental model of intravenous LPS-induced inflammation,
ticagrelor and clopidogrel were associated with a significant reduction of IL-6, TNFα and CCL2,
and an additional reduction of IL-8 was obtained with ticagrelor [115]. However, anti-inflammatory
effect of clopidogrel is inconsistently reported in clinical trials enrolling patients with acute coronary
syndromes or stable coronary artery disease, with a reduction of CRP and TNFα [116]. Still, the
recently published double-blinded randomized XANTHIPPE study comparing ticagrelor to placebo in
pneumonia, demonstrated a significant reduction in plasma IL-6 levels in the ticagrelor group [113].

4.3. Platelet-Leukocyte Interactions and Formation of Neutrophil Extracellular Traps (NETs)

The pathophysiology of platelet-leukocyte interaction has recently been extensively reviewed
by Rossaint et al. [117]. Resting circulating platelets act as sentinels in the blood. Upon activation,
degranulation and membrane expression of platelet receptors enable physical interactions between
platelets and leukocytes, especially neutrophils, forming so-called platelet-leukocyte aggregates
(PLAs) [117–119]. This interaction is critical in both thrombosis and inflammatory situations. It
allows leukocyte activation and recruitment to sites of inflammation and induces the release of
proinflammatory mediators, reactive oxygen species (ROS) and neutrophil extracellular traps (NETs)
by neutrophils [117–119].
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The first interaction between platelets and leukocytes is established between P-selectin (CD62P)
on activated platelets and PSGL-1, constitutively expressed on the surface of neutrophils, monocytes,
dendritic cells, and subclasses of lymphocytes. CD62P/PSGL-1 interaction induces the activation
of αMβ2 (Mac-1) integrin on leukocyte surface. Platelet leukocyte interaction is then stabilized by
direct-binding of Mac-1 to platelet GPIbα and indirect binding to activated platelet αIIbβ3 (GPIIbIIIa)
via fibrinogen [117–119].

NETs are large, web-like extracellular chromatin structures that are released by neutrophils upon
various activating stimuli, including exogenous microorganisms (bacteria, fungi, virus, and parasites),
immune complexes and activated platelets [120]. NETs can trap, neutralize and kill microorganisms,
but also activate platelets and promote coagulation [121]. They are considered as critical players in
many inflammatory conditions, especially sepsis-induced organ injuries, autoimmunity, tumorigenesis
and metastasis [120]. NETs also contribute to thrombogenesis by forming a mesh with platelets and
fibrin and accumulating coagulation factors such as TF [118,120,122].

The crosstalk between activated platelets and neutrophils is a critical regulator of NETosis [123,124].
Platelet-neutrophil direct binding is an essential step in platelet-driven NETosis and is mainly mediated
by P-selectin/PSGL-1 and GPIbα/Mac-1 interactions [120,123–125]. NET formation is further stimulated
by platelet-released soluble mediators including high mobility group box 1 (HMGB1), PF4 and
RANTES [120,123–125].

P2Y12 inhibition by clopidogrel, prasugrel, ticagrelor and cangrelor has been consistently associated
with inhibition of platelet-leukocyte interaction and platelet P-selectin expression in animal models of
inflammation and in vitro studies [48,105,126–129]. In a human experimental model of intravenous
LPS-induced inflammation, both ticagrelor and clopidogrel were associated with a significant reduction
of platelet-monocyte aggregates [115]. Moreover, reduction of PLAs and P-selectin expression
by clopidogrel was reported in clinical studies of patients with acute coronary syndromes and
atherosclerotic vascular disease [130,131]. Finally, the recent XANTHIPPE study demonstrated a
reduction in PLAs in the ticagrelor group compared to placebo [113]. To date, no study reported a
significant modulation of NETosis by P2Y12 inhibitors, although ticagrelor was recently shown to
reduce in vitro NET-induced platelet aggregation, secretion and expression of P-selectin [113,121].

4.4. Adenosine Mediated Effects

The mechanisms of adenosine signaling on immune cells has been extensively reviewed in a recent
work by Vigano et al. [132]. Adenosine exerts a powerful modulatory effect on inflammation and innate
immune responses through the activation of four different receptors (A1, A2A, A2B and A3) which are
expressed in the majority of immune cells, including neutrophils, lymphocytes, macrophages, mast
cells and dendritic cells. Adenosine principally induces an anti-inflammatory phenotype characterized
by a decreased ability to release inflammatory mediators, an inhibition of immune cell activation,
proliferation and chemotaxis. Therefore, adenosine acts as a regulator of immune cells that aims at
preserving host integrity and promotes the resolution of inflammation. Moreover, adenosine is a
potent inhibitor of platelet aggregation and adenosine receptor agonists have been shown to potentiate
antiplatelet effects of P2Y12 antagonists [87,133,134]. Thus, adenosine might have a beneficial effect in
the management of severe inflammatory disorders including sepsis.

As described above, ticagrelor has been shown to increase plasma levels of adenosine by inhibiting
ENT-1. To date, no study demonstrated an adenosine-mediated anti-inflammatory effect of ticagrelor,
although ticagrelor was shown to increase the in vitro inhibitory effect of exogenous adenosine on
platelet aggregation [87].

5. Current Evidence for P2Y12 Inhibition in Clinical Inflammatory Diseases and Syndromes

P2Y12 is now considered as a potential target in several inflammatory diseases, including sepsis,
asthma, atherosclerosis and cancer. Main clinical studies evaluating the effects of P2Y12 inhibition in
those inflammatory diseases are reported in Table 2 and will be further discussed in this section.



Int. J. Mol. Sci. 2020, 21, 1391 10 of 25

Table 2. Clinical studies investigating anti-inflammatory effects of P2Y12 antagonists.

Study Type of Study Condition Antiplatelet Drugs Evaluated Effects of P2Y12 Antagonists

Winning et al. [135] Observational
224 patients CAP ASA and thienopyridines

Lower use of ICU and shorter stay in
hospital (thienopyridines plus ASA or

thienopyridines alone

Storey et al. [136] Observational post hoc
analysis18,421 patients ACS Ticagrelor vs clopidogrel Lower mortality risk following

pulmonary events and sepsis

Tsai et al. [137] Observational
683,421 patients Sepsis ASA and thienopyridines Lower risk of mortality

XANTHIPPE
Sexton et al. [113]

RCT
60 patients Pneumonia (CAP, HAP) Ticagrelor vs placebo

Reduced PLAs and IL-6 levels improved.
Decreased supplemental oxygen

requirements

Laidlaw et al. [138] Crossover RCT
40 patients AERD Prasugrel vs placebo No effect on clinical or inflammatory

parameters

PRINA
Lussana et al. [139]

Crossover RCT
26 patients Chronic asthma Prasugrel vs placebo Decreased airway hyperresponsiveness

Raposeiras-Roubin et al. [140] Observational
4229 patients ACS Ticagrelor, Clopidogrel and

Prasugrel
Lower cancer risk ticagrelor vs

clopidogrelNS clopidogrel vs prasugrel

Leader et al. [141] Observational
3479 patients ACS ASA and clopidogrel Lower cancer risk (clopidogrel plus ASA

or clopidogrel alone)

Hicks et al. [142] Observational
41,403 patients

Cancer (breast, colorectal,
prostate) Clopidogrel No increase in cancer risk

Elmariah et al. [143] Meta-analysis
48,000 patients

Cardiovascular and
cerebrovascular disease ASA and clopidogrel No increase in cancer risk

Rodriguez-Miguel et al. [144] Observational
75,491 patients CRC ASA and clopidogrel Lower cancer risk (clopidogrel plus ASA

or clopidogrel alone)

CAP: community acquired pneumonia, HAP: hospital acquired pneumonia, ASA: acetylsalicylic acid=aspirin, ICU: intensive care unit, ACS: acute coronary syndrome, RCT: randomized
control trial, AERD: aspirin-exacerbated respiratory disease, NS: non-significant difference, CRC: colorectal cancer.
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5.1. Sepsis and Sepsis-Induced Acute Lung Injury (ALI)

Sepsis is defined as a life-threatening organ dysfunction that is caused by a dysregulated systemic
inflammatory and immune host response to infection [145]. The mechanisms underlying the excessive
inflammation in sepsis have been extensively reviewed by van der Poll et al. [146]. To summarize,
sepsis-induced organ dysfunctions result from the interplay between uncontrolled activation of the
complement, coagulation, and inflammatory systems. Platelet-mediated inflammatory response is
now recognized as a critical player in the pathophysiology of sepsis, and is especially involved in
sepsis-induced experimental acute lung injury (ALI) and clinical life-threatening acute respiratory
distress syndrome (ARDS) through several mechanisms, including pathogen sensing, release of
inflammatory mediators, recruitment and activation of immune cells and thrombosis [109,147–151].

First report of the potential benefits of P2Y12 inhibition in sepsis came from observational studies
of patients receiving antiplatelet agents. A study of 224 consecutive patients admitted for community
acquired pneumonia showed lower use of intensive care unit and shorter stay in hospital in patients
receiving antiplatelet agents (aspirin and/or thienopyridines) for at least 6 months compared with
age-matched controls [135]. More evidence came from a post hoc analysis of the PLATO trial, in which
ticagrelor was shown to significantly reduce death from vascular causes, myocardial infarction, or
stroke compared to clopidogrel in 18,624 patients with ACS [152]. This analysis on 18,421 patients
revealed that, compared to clopidogrel, ticagrelor was associated with a lower mortality risk following
pulmonary events and sepsis in acute coronary syndrome [136]. Finally, a recent observational study
including 683,421 patients hospitalized for sepsis, showed a lower risk of mortality in patients receiving
antiplatelet agents before admission [137]. Using a nested-control study design in 372,748 patients,
they showed that both aspirin and P2Y12 inhibitors were associated with a lower adjusted risk of
mortality [137].

Those findings were further confirmed in experimental animal models of endotoxemia and
abdominal sepsis. In a rat model of LPS-induced endotoxemia, clopidogrel inhibited IL-6 and TNFα
secretion and reduced lung and liver histological injuries [114]. Liverani et al. demonstrated in a
mouse model of intra-abdominal sepsis that clopidogrel-treated and P2Y12 null mice were refractory to
sepsis-induced lung injury and exhibited a decrease in platelet activation, platelet-leukocyte aggregation
and release of inflammatory cytokines [48]. Those results were confirmed in another mouse model
of intra-abdominal sepsis in which ticagrelor reduced histological findings of sepsis-induced lung
injury, pulmonary infiltration of neutrophils, formation of PLAs and platelet activation [126]. To our
knowledge, only one experimental study on LPS-treated mice demonstrated a benefit of ticagrelor on
mortality [113].

The XANTHIPPE trial (Examining the Effect of Ticagrelor on Platelet Activation, Platelet-Leukocyte
Aggregates, and Acute Lung Injury in Pneumonia), was the first double-blinded placebo-controlled
randomized study to evaluate the effect of ticagrelor on inflammation, platelet activation and
lung function in 60 patients with community or hospital-acquired pneumonia [113]. Ticagrelor
administration to patients within 48h of pneumonia diagnosis demonstrated anti-inflammatory effect
with reduced PLAs in circulation, lowered IL-6 levels and improved lung function with a decrease in
supplemental oxygen requirements [113].

5.2. Asthma

Platelet activation is strongly involved in the pathogenesis of allergic asthma, including bronchial
hyperresponsiveness and airway wall inflammation and remodeling [153–155]. Among proposed
mechanisms, platelet P2Y12 pathway seems to play an important role. In a study of murine leukotriene
E4-induced asthma, clopidogrel treatment and P2Y12 gene knock-out reduced IL-13 levels and
airway eosinophilia and inflammation [20]. The underlying mechanism remains unknown. Two
randomized trials evaluated the effect of P2Y12 inhibition in patients with asthma. In a double-blind
placebo-controlled crossover trial of prasugrel in 40 patients with aspirin-exacerbated respiratory
disease, prasugrel did not attenuate aspirin-induced symptoms and failed to decrease PLA levels and
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mast cell activation [138]. Finally, the PRINA (effect of prasugrel on bronchial hyperreactivity and
on markers of inflammation in patients with chronic asthma) trial, in which 26 asthmatic patients
were randomly and blindly allocated to prasugrel or placebo for 15 days followed by a 15-day
wash-out and a cross-over, showed that P2Y12 inhibition by prasugrel significantly decreased airway
hyperresponsiveness with improvement of forced expiratory volume [139].

5.3. Atherosclerosis

Atherosclerosis is a chronic inflammatory vascular disease involving cellular and molecular
interactions between platelets, endothelial cells, VSMCs and monocytes, interactions that deeply
involve the P2Y12 receptor [156–158].

The role of P2Y12 in atherosclerosis has been well documented in experimental models. In a
mouse model of atherosclerosis by Apolipoprotein E (ApoE) gene knock-out, genetic P2Y12 deletion
was associated with reduced lesion area, increased fibrous content at the plaque site and decreased
inflammatory cell infiltration [159]. Likewise, clopidogrel and ticagrelor limited the progression of late
atherosclerotic lesion and promoted plaque stability in ApoE knockout mice [160–163]. Unfortunately,
differential analysis of the role of platelet and non-platelet P2Y12 receptors was not possible with these
studies. Therefore, a study using P2Y12 gene knockout and bone marrow transplantation in ApoE null
mice demonstrated that, compared to vessel wall P2Y12, platelet P2Y12 had no effect on early atheroma
formation, implying additional role of VSMC P2Y12 receptors [164]. Further studies are necessary to
clarify the extent to which vessel wall and platelet P2Y12 influence early and late atherogenesis.

5.4. Cancer—Tumor Growth and Metastasis

The recent advances in the knowledge of cancer have shown that the biology of cancer has evolved
from a tumor-centered view to a concept that places cancer cells within a cell network, including
fibroblasts, vascular cells and inflammatory immune cells, that form the tumor microenvironment
(TME) [165]. Modulation of inflammation within the TME is a critical player during all stages of
tumorigenesis and involves reciprocal interactions between cancer cells and surrounding inflammatory
cells. These interactions can promote tumor growth by direct proliferative effect on tumor cells and by
inducing immunosuppression [165].

The role of platelets in all steps of tumorigenesis including tumor growth, tumor cell extravasation
and metastasis has been extensively studied and is now well-recognized [9,166]. Activated platelets
not only secrete PF4 but also lipids, microRNAs and numerous growth factors, including TGFβ
(transforming growth factor β) and VEGF, which favor tumor cell proliferation, metastasis and
angiogenesis. Moreover, the interaction between platelets and cancer cells is largely described in the
literature as a mechanism favoring tumor- cell induced platelet activation (TCIPA), and inducing a
“shield” of platelets coating the tumor cells and protecting them from the immune response [9].

5.4.1. In Vitro and Preclinical Studies on P2Y12 Inhibition in Cancer

Consequently, most of published data have evidenced a net anti tumoral effect of antiplatelet
agents, including aspirin, cilostazole and P2Y12 inhibitors. The rationale to focus on anti-P2Y12 agents
came recently first from the discovery of ADP secretion by tumor cells. For instance, Cho et al. nicely
showed the secretion of ADP by ovarian cancer cells [167]. Therefore, platelets can be activated directly
by tumor cells via cell-to-cell interactions, and indirectly via ADP secreted by tumor cell. Second is
the expression of P2Y12 receptors in cells other than platelets, such as VSMCs and tumor cells such
as breast cancer cell lines [27]. In Cho’s study, the use of ticagrelor reduced tumor growth by 60%
compared to aspirin and 75% versus placebo, inhibited proliferation as assessed by Ki67 positivity,
and increased apoptosis of ovarian cancer cells. In P2Y12−/− mice, the growth of ovarian tumors
was reduced by over 85% compared to wild-type animals, but not in P2Y1−/−mice, pointing to the
essential role of P2Y12 between the two ADP receptors. Finally, the invalidation of ectopyrase gene
(CD39, which catabolizes ADP) in cancer cells increased platelet-related cancer cell proliferation.
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This finding is not restricted to ovarian tumor cell lines. Gareau et al. showed the beneficial effect
of ticagrelor in limiting the interaction between platelets and human mammary carcinoma cells [168].

In other preclinical studies, ticagrelor used at clinical dose (10 mg/kg) inhibited metastasis and
improved survival in a mouse model of melanoma metastasis [169].

In a Lewis lung carcinoma spontaneous metastatic mouse model, P2Y12 deficiency reduced
pulmonary metastasis and reduced the ability of platelets to secrete active TGFβ1, thus limiting
epithelial to mesenchymal transition and invasiveness of tumor cells [170]. Same findings were
observed with B16 melanoma metastasis model.

Consequently, targeted therapies start to emerge in the aim to prevent platelet-tumor cell
interactions. The tumor-homing peptide Cys-Arg-Glu-Lys-Ala (CREKA) that targets fibrin-fibronectin
complexes found on the tumor stroma and vessel wall was linked to ticagrelor. CREKA-ticagrelor
inhibited platelet-induced migration of 4T1 tumor cells and prevented tumor-platelet interaction.
In vivo, it suppressed lung metastasis in a mouse model injected with breast cancer cells [171]. This
finding opens the way to innovative antimetastatic agents.

5.4.2. Are anti P2Y12 Agents Protective or at Risk for Increased Cancer-Related Events?

Numerous studies analyzing the potential effect of antiplatelet agents on cancer converge to a
protective effect of low dose aspirin on cancer-related mortality. For instance, in the meta-analysis
of Algra and Rothwell including 17 studies, regular use of aspirin was protective from colorectal
cancer ([OR] 0.62, 95% CI 0.58–0.67, p < 0.0001) [172]. Given that COX1 inhibition is predominant over
COX2 inhibition at low dose aspirin, this effect is likely to result primarily from the antiplatelet effect
of aspirin.

By contrast, results from randomized clinical trials on anti P2Y12 agents are conflicting. Whereas
CAPRIE and CHARISMA studies of clopidogrel versus aspirin did not report increased cancer
development, some data from trials using prolonged anti P2Y12 treatment showed increased rates of
cancer-related mortality [173,174]. TRITON-TIMI 38 trial of prasugrel compared to clopidogrel on top
of aspirin for 6 to 15 months showed a significantly accelerated cancer progression and increased risk
of cancer death in the prasugrel group, particularly with breast, colorectal and prostate cancers [175].
One explanation for this apparent paradoxical effect was that the more potent antiplatelet effect of
prasugrel brought more events to medical attention and to an increased number of diagnosed cancers.
However, results were different in the TRILOGY trial with no difference in cancer frequency between
clopidogrel and prasugrel groups after a median follow-up of 17 months [176]. Clopidogrel and
ticagrelor given more than 12 months after drug-eluting stenting in the DAPT trial showed a significant
increase in cancer-related deaths [177]. However, deaths related to cancer in this study were relatively
low in number. Also concerning ticagrelor, PEGASUS-TIMI 54 trial showed an enhanced cancer risk
of ticagrelor administered beyond 1 year, whereas PLATO was negative [152,178,179]. Interestingly
Raposeiras-Roubin et al. performed a retrospective study on 4229 consecutive acute coronary syndrome
patients with a median follow up of 46 months [140]. They found that ticagrelor resulted in a lower
cancer risk than clopidogrel without difference between clopidogrel and prasugrel. Noteworthy, only
311 patients were diagnosed with cancer during the follow up (incidence 2.1 per 100 people per year)
and ticagrelor-receiving population was 459 versus 3530 with clopidogrel.

Overall, these clinical randomized trials do not include an untreated comparator arm, and are not
powered to detect differences in cancer-related events or mortality. Consequently, the Food and Drug
Administration (FDA) reported a two trial-level that “rejected the hypothesis of cancer association
in patients on dual anti platelet therapy with clopidogrel, that is, the adverse mortality findings in
the DAPT trial were not confirmed” [180]. Moreover, the FDA Adverse Event Reporting system is
probably unreliable for adequate assessment of cancer risk during antiplatelet treatment as associated
cancers might be unreported and/or missed [181].

The evidence for no cancer risk with P2Y12 inhibitors mostly stems from meta-analysis and
cohort studies. The meta-analysis of Kotronias et al included nine studies with more than 282,000
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participants [182]. When compared with standard aspirin or placebo, the thienopyridines clopidogrel
and prasugrel were not associated with cancer mortality and event rate. The study concluded that there
was insufficient evidence to suggest an association between thienopyridine exposure and increased
risk of cancer event rate or mortality.

The question of the duration of treatment was also addressed in cohort studies. Leader et
al showed a lower risk of cancer in subjects exposed to aspirin compared to non-users, with or
without clopidogrel, on long-term follow-up [141]. In a large cohort of 10,359 colorectal cancer, 17,889
breast cancer, and 13,155 prostate cancer patients, Hicks et al evaluated the post-diagnostic use of
clopidogrel and cancer-specific mortality during an average follow-up of 5 years [142]. Overall, there
was no increase in the rate of cancers in patients receiving clopidogrel, after adjustment for potential
confounders. Finally, the meta-analysis of Elmariah et al including more than 48,000 patients from
six randomized trials confirmed the absence of impact of prolonged clopidogrel on top of aspirin on
mortality or cancer [143]. More recently, Rodriguez-Miguel et al showed in 15,491 cases of colorectal
cancer versus 60,000 controls, that low-dose aspirin was associated with a reduced risk of colorectal
cancer incidence in patients receiving treatment for more than one year [144]. Same reduction of 20 to
30% was found for clopidogrel alone or in combination with aspirin. In short-term users, there was on
the contrary an increased risk for patients on clopidogrel and aspirin. Again, the hypothesis raised
was an increased incidence of gastro-intestinal bleedings that led to a greater number of colonoscopies
and early diagnosis.

Altogether, if it is challenging to compare the effects of antiplatelet agents on cancer-related death
in studies designed to analyze adverse cardiovascular-related events, a head-to-head comparison
between molecules is also questionable because their pharmacology differs. The thienopyridine
clopidogrel has a less predictable effect than prasugrel or ticagrelor. Clopidogrel is indeed less effective
in a subset of around 30% of patients, especially those carrying loss-of-function 2C19*2 variant [78].
Besides, ticagrelor not only has more predictable pharmacokinetics than clopidogrel but has been
shown to exert an anti-inflammatory effect due to an increased adenosine extracellular concentration.
Finally, most studies have investigated the effect of anti P2Y12 agents on top of aspirin and it is difficult
to conclude for one drug over the others.

6. Conclusions

P2Y12-mediated nucleotide signaling is now considered to be a critical player in inflammatory
response. Besides platelets, P2Y12 is expressed in many immune and vascular cells and has been
shown to modulate inflammatory processes, including the release of inflammatory mediators,
platelet–leukocyte interactions, and thrombosis. In addition to their antithrombotic properties,
P2Y12 inhibitors can therefore be considered to have valuable pharmacological targets for inflammation,
and the beneficial effects of anti-P2Y12 drugs have been reported for several experimental and clinical
inflammatory diseases, including sepsis, acute lung injury, asthma, atherosclerosis, and cancer. Still,
evidence is missing on the exact role of nonplatelet P2Y12 receptors and on how to distinguish
between the P2Y12-mediated and adenosine-mediated effects of ticagrelor. More prospective controlled
clinical studies are warranted to determine the potential benefits of P2Y12 inhibition therapy for
inflammatory diseases, and pharmacological strategies should be further developed to overcome
potential P2Y12-associated bleeding risks.
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Abbreviations

ACS Acute coronary syndrome
ADP Adenosine diphosphate
ALI Acute lung injury
APC Antigen-presenting cells
ApoE Apolipoprotein E
ARDS Acute respiratory distress syndrome
ATP Adenosine triphosphate
CAD Coronary artery disease
cAMP Cyclic adenosine monophosphate
CD40 Cluster of differentiation 40
COX Cyclooxygenase
CREKA Tumor-homing peptide Cys-Arg-Glu-Lys-Ala
CRP C-reactive protein
CYP450 Cytochrome P450
DC Dendritic cells
EL Extracellular loop
ENT-1 Equilibrative nucleoside transporter 1
FDA Food and Drug Administration
Gi G-protein i
G-protein Guanine nucleotide-binding protein
Gq G-protein q
GPIIbIIIa Glycoprotein αIIbβ3
HMGB1 High-mobility group box 1
IL Interleukin
IP3 Inositol 1,4,5-trisphosphate
LPS Lipopolysaccharide
MACE Major adverse cardiovascular event
MCP-1 Monocyte chemoattractant protein 1
NETs Neutrophil extracellular traps
PAR Protease-activated receptors
PCI Percutaneous coronary intervention
PDGF Platelet-derived growth factor
PF4 Platelet factor 4
PI3K Phosphoinositide-3-kinase
PKA Protein kinase A
PLAs Platelet leukocyte aggregates
RANTES Regulated on activation, normal T-cell-expressed and -secreted
ROS Reactive oxygen species
TCIPA Tumor-cell-induced platelet activation
TF Tissue factor
TGF Transforming growth factor
TME Tumor microenvironment
TNF Tumor necrosis factor
TXA2 Thromboxane A2
VASP Vasodilator-stimulated phosphoprotein
VEGF Vascular endothelial growth factor
VSCMs Vascular smooth muscle cells
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