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ABSTRACT: Strain-induced crystallization in natural rubber has long been modeled as an isothermal pro-
cess. Recent calorimetric measurements (Samaca Martinez et al. 2013a,b) and a theoretical result (Khiˆem
and Itskov 2018) revealed severe limitations of this approach. First, it was not able to describe the Gough-
Joule effect as well as the rate of crystallization (melting) in natural rubber. Second, the stress-strain hysteresis
of natural rubber was improperly attributed to the mechanical dissipation. In this contribution, we present a
fully coupled thermo-micromechanical theory of strain-induced crystallization in natural rubber. Accordingly,
deformation is accompanied by heat production/absorption. It potentially induces an evolution of the heat
source which alters the temperature of the sample. In contrast to previous works on thermo-mechanics of
rubber-like materials, the internal energy and the entropy are formulated in our model explicitly in terms of
state variables. The crystallinity is not considered as an internal variable, and its evolution is elucidated by
crystal nucleation in loading and crystal growth in unloading. The crystallization kinetics (Khiˆem and Itskov
2018) is further extended beyond uniaxial deformation, which offers microscopic boundary conditions for the
representative chain on the one hand, and provides a formulation for the crystallinity on the other hand.
Model predictions are compared with comprehensive experimental results and shed new light on strain-
induced crystallization of natural rubber.

1 INTRODUCTION

Despite recent efforts on theoretical treatments of the
kinetics of strain-induced crystallites in natural rub-
bers (Laghmach, Candau, Chazeau, & Munch 2015,
Plagge & Klüppel 2018, Gros, Huneau, Verron, &
Tosaka 2019), thermomechanics of strain-induced
crystallization has not been fully understood.
Indeed, most of the constitutive models proposed
for strain-induced crystallization are isothermal
(see counter-examples in Behnke2018 and Khiem
2018b), which contradicts experimental data (Samaca
Martinez, Le Cam, Balandraud, Toussaint,& Caillard
2013a). Furthermore, these elastoplasticity-based
models predict strictly positive mechanical dissipa-
tion, which has not been observed in calorimetric ana-
lysis (Samaca Martinez, Le Cam, Balandraud,
Toussaint, & Caillard 2013b). For further discussion
on constitutive modeling of strain-induced crystalliza-
tion, interested readers are referred to Khiêm and
Itskov (2018b).

In this paper, we propose a fully coupled thermo-
micromechanical theory of strain-induced

crystallization in natural rubber. The model is con-
structed on the basis of the analytical network aver-
aging concept (Khiêm & Itskov 2016, Khiêm &
Itskov 2018b). Accordingly, microscopic boundary
conditions of representative chains are driven by
microstructural alteration of natural rubbers due to
strain-induced crystallization. The evolution of crys-
tallinity is explained by nucleation of bundle-like
crystallites in loading and growth and melting of
crystallites under unloading (Khiêm & Itskov
2018b). The proposed theory includes few physically
motivated material constants and demonstrates good
agreement with full thermal and calorimetric fields
measurement of natural rubbers.

2 EXPERIMENTAL SETUP

2.1 Material, specimen geometry, testing machine
and loading conditions

The material considered here is an unfilled natural
rubber. The test was carried out with a cruciform-
shaped specimen. Its total length is 125 mm and its
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thickness is 2 mm. Figure 1 presents an overview of
the experimental setup composed of a home-made
biaxial testing machine, an infrared (IR) camera and
the cruciform-shaped specimen. The machine is
composed of four independent electrical actuators
controlled by an in-house LabVIEW program. Two
load cells measure the force in the two perpendicular
directions. The four specimen branches were
stretched under a prescribed displacement equal to
200 mm at a rate of 150 mm/min. An optical camera
and a home-made LED system can also be seen in
the figure. They were used for evaluating the full dis-
placement fields by digital image correlation.

2.2 Full thermal field measurement

Temperature measurements were performed by
using a FLIR IR camera equipped with a focal plane
array of 640 � 512 pixels and detectors operating in
wavelengths between 1.5 and 5.1 �m. The integra-
tion time and the acquisition frequency were 2623
�s and 5 Hz, respectively. The calibration of camera
detectors was performed with a black body using a
one-point Non-Uniformity Correction (NUC) pro-
cedure at this acquisition frequency. The thermal
resolution or noise equivalent temperature difference
(NETD) was 20 mK for a temperature range between
5 and 40�C. The spatial resolution of the thermal
field was equal to 390 �m/px. The IR camera was
switched on several hours before testing in order to
ensure its internal temperature to be stabilized.

3 THERMOMECHANICAL FRAMEWORK

3.1 Helmholtz free energy

The Helmholtz free energy of natural rubber at a
continuum material point can be given in the general
case by

� ¼ U F;�;Tð Þ � T� F;�;Tð Þ; ð1Þ

where U is the internal energy per unit referential
volume and � is the network entropy. F is the
deformation gradient, � denotes an internal variable
and T is the absolute temperature. The quantities F,
� and T are state variables.

3.2 Laws of thermodynamics

The local form of the first law of thermodynamics is
given in the Lagrangian description by Germain
et al. 1983 as

_U ¼ P : _F� DivQþ R̂; ð2Þ

where Q is the heat influx per unit referential
area, R̂ denotes the heat supply per unit referential
volume of the body, P is the first Piola-Kirchhoff
stress tensor and the superposed dot indicates the
material time derivative.

The second law of thermodynamics can be given
in the form of the Clausius-Planck inequality by Ger-
main et al. 1983 as

Dint ¼ P : _F� _U þ T _� � 0: ð3Þ

Therein, Dint is referred to as internal dissipation
in Holzapfel (2000, page 170), or as mechanical or
intrinsic dissipation in calorimetric studies (see e.g.
Chrysochoos et al. (2010)).

In view of (1) and (3), one can write (Khiêm &
Itskov 2018b)

P ¼ @U
@F
� T

@�

@F
� pF�T; ð4Þ

@U
@T
¼ T

@�

@T
; ð5Þ

Dint ¼ �
@U
@�

: _�þ T
@�

@�
: _� � 0; ð6Þ

where p denotes a Lagrange multiplier arising from
the incompressibility constraint. Note that the mass
densities of crystalline and amorphous rubber are dif-
ferent, so the volume of natural rubber sample changes
during deformation (up to 6%, see e.g. Le Cam and
Toussaint (2008)). However for the sake of simplicity,
we neglect the change in volume of natural rubber, and
consider it as incompressible. In view of (1) and (5),
the entropy of the rubber network is given by

� ¼ � @�

@T
: ð7Þ

3.3 Statistical mechanics of a polymer network

According to the analytical network averaging con-
cept (Khiêm & Itskov 2016), all polymer chains in
the rubber network are replaced by a representative
freely jointed chain confined in a mean tube under-
going a microscopic tube stretch and a microscopic
tube contraction. The number of microstates the
chain can be realized by rotations about its segments

Figure 1. Overview of the experimental setup
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can be calculated via the probability distribution of
the end-to-end vector. The effect of topological con-
straint on the chain conformation can be accounted
for by a tube-contraction probability density. Fur-
thermore, strain-induced crystallization is considered
here as a phase transition, and thus causes a raise in
temperature. Consequently it increases the disorder
of segmental arrangement in the system. The dis-
order can be described by an additional entropy term
��. Since the three events (changes in the number of
microstates due to the chain stretch, the tube contrac-
tion and the change in temperature, respectively) are
considered independent, the network entropy is
therefore given by (Khiêm & Itskov 2018b)

� ¼ NcsF F;�ð Þ þ �� Tð Þ ¼ Nc sc þ stð Þ þ �� Tð Þ;
ð8Þ

where Nc is the number of active chains per unit
reference volume of the rubber network, and sF is the
deformation-dependent entropy of the mean chain.

The first part of the chain entropy sc results from
the closed-form of Rayleigh‘s exact distribution
function for the non-Gaussian chain, and can be
given by (Khiêm & Itskov 2016)

sc ¼ �kBn� ln
pr

n sin pr
n

� � ; ð9Þ

where n is the number of chain segments, r ¼ �lR
is the normalized end-to-end distance (after division
by the Kuhn length) of the mean chain, R denotes
the normalized reference end-to-end distance and �l
is the microscopic stretch. The constant � ¼ 9

p2 arises
from the spring constant of the linear coarse-grained
model. kB is the Boltzmann constant.

The second entropy contribution st is induced by
the topological constraint, and is written by (Khiêm
& Itskov 2016)

st ¼ �kB!��; ð10Þ

where ! is a geometrical parameter of the tube, ��
is the microscopic tube contraction.

Since segments in the freely jointed chain can fluc-
tuate randomly under temperature change, the third
part �� can be represented in analogy with the entropy
of an ideal gas as follows (Khiêm & Itskov 2018b)

�� Tð Þ ¼ c0 ln
T
T0

; ð11Þ

where T0 is the referential temperature and the
material constant c0 represents the heat capacity
density (per unit referential volume) at constant
deformation.

The internal energy of natural rubber can be fur-
ther decomposed by

U ¼ UF F;�ð Þ þ U� Tð Þ: ð12Þ

In our model, the deformation-dependent part of
internal energy is only taken into account in the case
of crystallization (Khiêm & Itskov 2018b). The
second term U� due to the raise of temperature is
given by (Khiêm & Itskov 2018b)

U� ¼ c0 T � T0ð Þ: ð13Þ

In view of (2), the temperature alteration due to
phase transition can be written as (Khiêm & Itskov
2018b)

c0 _T ¼ P : _F� _UF

� �
� DivQþ R̂: ð14Þ

4 ANALYTICAL HOMOGENIZATION

In Khiêm & Itskov (2016, 2018a, 2018b), we have
developed an analytical homogenization scheme for
polymeric materials, which permits a transition from
the macroscopic level to the scale of molecule. It
assumes the existence of an orientational distribution
of subnetworks in the polymer that evolves with the
microstructural change (Figure 2). A crucial point of
this approach is determination of fraction of subnet-
works oriented in different directions at a continuum
material point. Latest spectacular developments in
experimental techniques using mechanochemistry,
wide angle X-ray diffraction and calorimetric signals
allow direct access to such microstructural informa-
tion (Ducrot, Chen, Bulters, Sijbesma, & Creton
2014, Brüning, Schneider, Roth, & Heinrich 2015, Le
Cam 2018).

4.1 Analytical network-averaging

According to the analytical network-averaging con-
cept (Khiêm & Itskov 2016), each directional chain
in the network is represented by a representative

Figure 2. Comparison between the distribution of polymer
subnetworks and wide angle X-ray diffraction data under
uniaxial loading. The wide angle X-ray diffraction images
(b,d) were provided through the courtesy of Bertrand
Huneau.
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chain confined in a tube undergoing an average-tube
stretch and an average-tube contraction.

The spatial distribution function of polymer
chains in arbitrary direction can be developed into a
series of probability density functions �i related to a
set of predefined directions specified by unit vectors
Ei (i ¼ 1; 2; ::;m) as follows

� nð Þ ¼
Xm
i¼1

1

m
� ~�i nð Þ ¼

Xm
i¼1

1

m
� �i �i; &i;Eið Þ: ð15Þ

Therein, m is the number of equidistant colloca-
tion points on a half-sphere specifying the deform-
ation-induced anisotropy. Each constituent
�i �i; &i;Eið Þ of the probability density (15) is defined
on the basis of an even von Mises-Arnold-Fisher dis-
tribution function (Khiêm & Itskov 2017) as

�i �i; &i;Eið Þ ¼ &i
4p sinh &ið Þ

cosh &i � cos �ið Þ; ð16Þ

where �i indicates the angle between the direc-
tional unit vector n and the vector Ei, &i denotes the
concentration parameter.

The most general formulation of the concentration
parameters can be given at time t by (for the sake of
brevity, explicit reference to the material point X is
omitted in the response functional)

&i tð Þ ¼ M
	2 �1;t�ð

F 	ð Þ;�½ �; ð17Þ

where F 	ð Þ denotes the deformation gradient at
time 	 in the past and � is an internal variable.

The mesoscopic stretch is evaluated as the root
mean square of the macroscopic stretch over the unit
sphere by taking the directional chain distribution
into account (Khiˆem & Itskov 2018a)

�� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
i¼1

1

m
� 1� wið Þ I1

3
þ wi�2

i

� �s
; ð18Þ

where �i and ’i are spherical coordinates of the
vector n with respect to orthonormal vectors based
on the collocation directions Ei. I1 denotes the first
principal invariant of the right Cauchy-Green tensor
C ¼ FTF, and �2

i ¼ C : Ei � Ei is the square of the
macro-stretch in direction Ei. The fraction of chains
wi aligned in each direction i (i ¼ 1; 2; ::;m) is
expressed by

wi ¼
&i
2 � 3 coth &ið Þ&i þ 3

&i2
: ð19Þ

In the next step, the mesoscopic tube contraction
is evaluated as the root mean square of the

macroscopic tube contraction over the unit sphere.
In the same manner as (18), the mesoscopic tube
contraction is derived as

�� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
i¼1

1

m
� 1� wið Þ I2

3
þ wi�2

i

� �s
; ð20Þ

where I2 denotes the second principal invariant of
the right Cauchy-Green tensor C and �i is the macro
tube contraction in direction i. It is expressed as
�2

i ¼ cofC : Ei � Ei, where cofC ¼ C�TdetC.

4.2 Mesostretch amplification

By comparison of different physically-based consti-
tutive models with molecular dynamics simulation
of several polymers, it was demonstrated (Khiêm &
Itskov 2017) that an additional transition between
the mesoscopic and microscopic scales is essential to
capture the failure stretch of the polymer network.
Accordingly, the micro-stretch is expressed by

�l ¼ ��q; ð21Þ

where q is the stretch amplification exponent
related to the degree of inhomogeneity of the rubber
network.

5 STRAIN INDUCED CRYSTALLIZATION

Phase transition in polymeric materials is governed
by the crystallization kinetics. It generally contains
two steps: formation of a solid cluster of polymer
segments (nucleus) in the amorphous network and
growth of such cluster. These steps are referred to as
crystallization nucleation and growth, respectively.
In this section, we shall derive the evolution of the
number of crystallites during cyclic loading of nat-
ural rubber and demonstrate the connection between
the crystallinity and the fraction of oriented subnet-
works wi in different directions.

5.1 Crystallization nucleation

The crystallite is assumed here to be bundle-like with
a cylindrical geometry (cf. Candau et al. (2014), Liu
et al. (2014) and Gros et al. (2015)). Each crystallite
is built by K neighbouring polymer chains. The
change in the free energy of a subnetwork due to the
nucleation of a crystallite is given by

	G ¼ 
t2Ksþ 
s2
ffiffiffiffiffiffiffiffi
pKs
p

l � Ksl	�i; ð22Þ

where 
t is the surface tension at the top surfaces of
the crystallite. 
s is the surface tension at the side of
the crystallite. 	�i is the difference in bulk free ener-
gies between the semicrystalline and the amorphous
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subnetworks. s is the cross-section area of a single
polymer chain, and l is the length of the crystallite.

Thus, according to the Lauritzen-Hoffman nucle-
ation theory (Hoffman & Lauritzen 1961), the
number of molecules Kb in the critical nucleus size
can be obtained as

Kb ¼ 4p
2s
s	�2

i

: ð23Þ

Crystallites with the number of molecules larger
than this critical value are likely to grow. The free
energy barrier is given in view of (22) by

	Gb ¼ 8p
t
2s
	�2

i

: ð24Þ

Therefore, the fraction of chains aligned in each
direction can be calculated as

wi ¼ wC exp �
8p
t
2s
kBT	�2

i

� �
; ð25Þ

where wC denotes the limit of chain alignment
(Toki, Sics, Ran, Liu, Hsiao, Murakami, Senoo, &
Kohjiya 2002).

5.2 Crystallization growth

Under unloading, some crystallites melt and the
sample temperature decreases. Due to the reduction
of temperature, mobility of molecules reduces and
the secondary crystals grow by aggregation of poly-
mer segments into the critical nuclei (Khiêm &
Itskov 2018b) . The probability of the crystalliza-
tion growth in a direction i is a joint probability of
the crystal nucleation Pn and the likelihood Pd that
the polymer segments can overcome the diffusion
barrier. In other words, the number of secondary
crystallites in the direction i, i ¼ 1; 2;…;m, is a
multiplication of the number of nuclei nn and the
number of grown crystallites ng from each
nucleus as

nci ¼ nn � ng: ð26Þ

In view of (25)

nn ¼ nU f̂ �cmax
i

� �
; ð27Þ

where nU is the maximum number of nuclei
involved in the crystallization growth and

f̂ �cmax
i

� �
¼ exp � 8p
t
2s

kBT0	�2
Ui �cmax

ið Þ

� �
.

The number of grown crystallites ng can be calcu-
lated by subtracting the number of melted segments

from the number of segments diffused into the crys-
tal nucleus as

ng ¼ nG f̂ �cmax
i

� �
� f̂ �ið Þ

h i
: ð28Þ

5.3 Crystallinity

The primary crystallinity can be calculated using
(25) as

�b ¼ BL

Xm
i¼1

exp � 8p
t
2s
kBT0	�2

i �ið Þ

� �
: ð29Þ

The secondary crystallinity is obtained via (26),
(27) and (28) as

�c ¼ BU

Xm
i¼1

f̂ �ið Þ f̂ �cmax
i

� �
� f̂ �ið Þ

h i
; ð30Þ

where BU is the secondary crystallinity constant.
Therefore, the total crystallinity is the sum of the

primary and secondary crystallinity

� ¼ �b þ �c: ð31Þ

6 RESULTS

In this section, predictive capability of the model in
the case of strain-induced crystallization in natural
rubber is demonstrated by a comparison with experi-
mental data. First, the model is fitted to uniaxial ten-
sion data of natural rubber (Le Cam, Samaca
Martinez, Balandraud, Toussaint, & Caillard 2015) to
determine its material constants (Fig. 3). Afterwards,
the tensile force on the branches of the cross-shaped
specimen in the equibiaxial experiment is predicted
and plotted versus macroscopic stretch (Fig. 4).

7 CONCLUSIONS

In the current work, we proposed a thermo-micro-
mechanical model capturing strain-induced crystal-
lization in natural rubbers. The model is developed
on the basis of the analytical homogenization
scheme (Khiêm & Itskov 2018b). Accordingly, the
spatial arrangement of polymer chains is driven by
crystallization kinetics. It alters the microscopic
boundary conditions of the representative chain and
induces the thermodynamic irreversibility. The
model prediction showed good agreement with both
mechanical response and calorimetric analysis of
natural rubber.
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Figure 3. Predictions of the proposed model in the case of
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