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ABSTRACT: In this paper, a new inverse identification method is proposed by coupling full kinematic and
thermal field measurements. It consists in reconstructing the heat source from two approaches, a first one that
requires the measurement of the temperature field and the value of the thermophysical parameters, and a sec-
ond one based on the measurement of the kinematics field and a thermo-hyperelastic model that contains the
parameters to be identified. The identification does not require any boundary conditions since it is carried out
at the local scale. In the present work, the method is applied to the identification of hyperelastic parameters
from a heterogeneous heat source field. Due to large deformations undergone by the rubber specimen tested, a
motion compensation technique is developed to plot the kinematic and thermal fields at the same points before
reconstructing the heat source.

1 INTRODUCTION

Several methods have been recently developed for
identifying parameters from field measurements.
They are reviewed in (Avril, Bonnet, Bretelle,
Grédiac, Hild, Ienny, Latourte, Lemosse, Pagano,
Pagnacco, & Pierron 2008). In many of these ap-
proaches, the boundary conditions are necessary to
solve the identification problem. The present study
aims at developing a methodology for inverse identi-
fication using only local quantities. This means that
constitutive parameters would be identified from a
zone at the surface of the specimen, whatever the
loading conditions applied to it. This implies that lo-
cal quantities explicitly depend on the strain-stress
relationship. In this work, we propose to identify
the constitutive parameters by reconstructing the heat
source field according to two different ways: a first
one that requires the kinematic field and a given ther-
momecanical model that contains the parameters to
be identified, and a second one that needs the temper-
ature field and the thermophysical parameters. This
inverse identification method has been applied to a
hyperelastic material, which involves several difficul-
ties. Indeed, hyperelasticity is generally used as a first
approximation to predict the mechanical response of
rubbery materials while several phenomena come into
play in the deformation process. Numerous constitu-
tive relations are available in the literature and have
been reviewed in (Marckmann & Verron 2007). Due
to the fact that hyperelastic models do not account
for the above-mentioned phenomena, the values of
the hyperelastic constitutive parameters depend on the

strain state. This is the reason why constitutive pa-
rameters are classically identified from several ho-
mogeneous tests, namely uniaxial tensile (UT), pure
shear (PS) and equibiaxial tensile (EQT). From these
three tests, the domain of possible loading paths can
be described. A trade-off between the sets of values
obtained with the different tests has therefore to be
found to obtain parameters that can reasonably be
considered as intrinsic to the mechanical behaviour
of the material. Such identification approach exhibits
several disadvantages, such as the necessity of mak-
ing different geometries for the different tests, and
the comparison between the constitutive parameters
identified from the different loadings. An alternative
approach has been proposed, based on the fact that
the identification of constitutive parameters can be
done from only one heterogeneous test, as soon as it
induces at least the three tests mentioned above. In
fact, a wide range of loading is also induced. This ap-
proach is further detailed in (Promma, Raka, Grédiac,
Toussaint, Le Cam, Balandraud, & Hild 2009) and
(Guélon, Toussaint, Le Cam, Promma, & Grédiac
2009). In the present study, such heterogeneous test is
used to identify the hyperelastic constitutive parame-
ters from a heat source approach.

2 HEAT SOURCE APPROACH

Considering that the constitutive state equations de-
rive from the Helmoltz free energy function and that
heat conduction follows the Fourier’s law, the local



diffusion equation writes:

ρ0CṪ −Div(K0GradT ) −R = S, (1)

where ρ0 is the density in the reference configuration,
C is the heat capacity, K0 is the thermal conductivity
tensor, T is the absolute temperature,R is the external
heat source (from radiation for instance) and S is the
heat source in the Lagrangian configuration.

2.1 Heat source field reconstruction from IR
measurement

IR thermography provides in-plane full temperature
fields. Therefore, the specimen under study has to
be thin and a two-dimensional version of the heat
equation is required for reconstructing the heat source
field. For that purpose, several assumptions are used.
First, the heat conduction is considered as isotropic.
Second, the temperature is considered to be homo-
geneous through the specimen thickness. Third, the
external radiations R are assumed to remains con-
stants over time. These assumptions lead to the two-
dimensional formulation of the heat diffusion equa-
tion:

ρ0C(θ̇+
θ

τ
− k0∆2Dθ) = S, (2)

where k0 is the coefficient of thermal conductivity,
θ is the temperature variation θ = T − Tref , τ is a
time characterizing the heat exchanges along the Z-
direction by convection with the air at the specimen’s
surface and ∆2D is the Laplacian operator in the spec-
imen plane in the Lagrangian configuration.

2.2 Heat source prediction from the displacement
field

The prediction of the heat sources produced during
the deformation process requires the choice of a free
energy. Here, the material is assumed to behave as
a hyperelastic material that is mechanically incom-
pressible and isotropic. At low strain levels, typically
inferior to 250%, the Neo-Hookean model can be
chosen to predict the mechanical behaviour (Treloar
1943). The free energy function is then given by the
following strain energy density:

W (F, T ) =
1

2
NkT (I1 − 3), (3)

where F is the deformation gradient tensor, N is the
number of network chains per unit volume, k is the
Boltzmann’s constant and I1 is the first invariant of
the left Cauchy-Green deformation tensor B.

While the material is supposed to be incompress-
ible, the deformation gradient tensor for a biaxial
loading is given by:

F = λe1 ⊗ e1 + λBe2 ⊗ e2 + λ−(B+1)e3 ⊗ e3, (4)

Figure 1: Specimen geometry

where e1, e2 and e3 are three orthonormal vectors of
the 3D Euclidian space, λ is the stretch ratio in the e1
direction, the operator ⊗ between two vectors is such
that [a⊗ b]ij = aibj and B is the biaxiality ratio. It is
equal to -0.5, 0 and 1 for uniaxial tension, pure shear
and equibiaxial tension, respectively.

In the case where the material does not produce
any intrinsic dissipation and no other thermomecani-
cal couplings come into play, the heat source is given
by:

S = NkT (λ+Bλ2B−1 − (B + 1)λ−2B−3), (5)

It should be noted that for temperature variation that
do not exceed a few degrees, the quantity NkT re-
mains nearly equal to NkTref .

3 EXPERIMENTAL SETUP

3.1 Material and specimen geometry

In the present study, the material chosen is an un-
filled nitrile rubber. Its thermomechanical behaviour
is driven by the coupling between strain and tem-
perature only. Therefore, only the contribution of
the thermo-elastic coupling is considered in the heat
source description. The specimen geometry is shown
in Figure 1.

3.2 Loading conditions

Figure 2 presents an overview of the experimental
setup composed of an optical camera and an infrared
one, on both side of the home-made biaxial testing
machine. In the present study, an equibiaxial load-
ing was applied by controlling the four actuators. For
each of them, the displacement and the loading rate
are set to 70 mm and 150 mm/min, respectively. It
should be noted that the two cameras are triggered for
storing images at the same time, at the rate of 5 Hz.



Figure 2: Overview of experimental setup

3.3 Full Kinematic field measurement

Displacement field at the specimen surface is deter-
mined by using the digital image correlation (DIC)
technique. In order to improve the image contrast, a
white paint is sprayed on the surface. The software
used for the correlation process was SeptD (Vacher,
Dumoulin, Morestin, & Mguil-Touchal 1999). The
spatial resolution, defined as the smallest distance be-
tween two independent points, was equal to 10 pixels,
which corresponds to 0.97 mm. The components of
the deformation gradient tensor are determined at the
centre of each square elements defined from the DIC
grid as follows.

Fij =
xi
Xj

(6)

The three principal stretches (λ1, λ2, λ3) are defined
as the square roots of the eigenvalues of the left
Cauchy-Green tensor B (B = FFT ). Since in-plane
displacement is measured, only λ1 and λ2 are deter-
mined, λ3 is deduced by assuming the material to be
incompressible. The biaxiality coefficient B, defined
as log(λ2)

log(λ1)
, is then computed. The two invariants I1 and

I2 of B are used for characterizing the heterogeneity
of the stretch states and the distribution in the maxi-
mum principal stretch value.

3.4 Full thermal field measurement

Temperature measurements were performed by using
a FLIR infrared camera. The calibration of camera de-
tectors was carried out with a black body using a one-
point Non-Uniformity Correction (NUC) procedure at
the acquisition frequency. The noise equivalent tem-
perature difference (NETD) is equal to 20 mK for a
range between 5 and 40◦C. The spatial resolution of
the thermal field was equal to 300 m/pixel. In order
to stabilize its internal temperature, the camera was
switched on several hours before the test.

3.5 Motion compensation technique

Due to large deformation undergone by the mate-
rial, materials points observed by the IR camera

Figure 3: Scheme and imagse of the calibration pattern with the
optical camera (on the left hand side) and with the IR camera (on
the right hand side)

move from pixel to pixel in the IR images (Pottier,
Moutrille, Le Cam, Balandraud, & Grédiac 2009).
The temperature variation at a given material point
has therefore to be processed by compensating its
movement and to track its temperature in the IR im-
ages. This requires first describing the kinematic and
thermal fields in the same coordinate system. For
that purpose, a calibration test pattern is positioned
in place of the specimen. It is a plate with two sets
of four holes, one that forms a large rectangle and a
second one that forms a small rectangle. This is il-
lustrated in Figure 3. The set of holes used depends
on the spatial resolution of the kinematic and ther-
mal fields. Mark tracking algorithm is used to deter-
mine coordinates of these holes for both optical and
IR camera. After that, a shared coordinate system is
defined by choosing one of these marks as the refer-
ence. Thanks to this shared coordinate system, each
point where the deformation gradient tensor is com-
puted can be plotted in the infrared image. As the two
cameras do not have the same resolution, the tempera-
ture of each point is interpolated from the four nearby
IR pixels.

4 RESULTS AND DISCUSSIONS

The heterogeneous test presented in the previous sec-
tion is performed. Figure 4 presents the displacement
field along the x and y axes. Then, the deformation
gradient tensor components are determined by using
the methodology described in the previous section.
The heterogeneity of the test can be evaluated by map-
ping the stretch states over the area of study. A color
scale is defined in such a way that EQT, PS and UT
states appear in blue, green and red colors, respec-
tively. Figure 5 highlights the spatial distribution of
the strain states: EQT at the specimen center, UT in
the branches and PS between these two states. Mo-
tion compensation technique has been then applied to
track the temperature of each point of the DIC grid,
as shown in Figure 6.



Figure 4: Displacement field along the x and y axis

Figure 5: Biaxiality coefficient field

Figure 6: Motion compensation technique applied on IR images

Figure 7: Return to thermal equilibrium curve to the determina-
tion of τ

In order to reconstruct the heat source field from IR
thermography measurements, the time constant τ has
to be determined experimentally. The method used
consists in heating the specimen and in measuring the
temperature field during the return to thermal equilib-
rium, then in fitting the curve by an exponential func-
tion, as shown in Figure 7.

Since heat source field can now be obtained both
by the heat equation and the Neo-Hookean model, the
constitutive parameter can be determined. Two dif-
ferent approaches are applied, a global one consider-
ing an unique Neo-Hookean parameter for the whole
specimen; a local one considering a different consti-
tutive parameter for each ZOI studied. The results
obtained illustrate the interest of such a new inverse
identification that can be applied to more complicated
models.

5 CONCLUSION

In this paper, a new inverse identification is devel-
oped from the reconstruction of the heat source field
from two approaches. Since it is a local approach, the
boundary conditions are not needed. In the present
work, the method is applied to hyperelasticity. A mo-
tion compensation technique has been developed and
validated. Finally, the identification is performed at
the local scale and at the scale of the Region of Inter-
est.
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