S. M. Alves, B. S. Barros, M. F. Trajano, K. S. Ribeiro, and E. Moura, Tribological behavior of vegetable oil-based lubricants with nanoparticles of oxides in boundary lubrication conditions, Tribology Int, vol.65, pp.28-36, 2013.

L. Zhang, Preparation and Tribological properties of novel Boehmite/Graphene Oxide nano-hybrid, Ceramics Int, vol.42, pp.6178-6186, 2016.

M. H. Esfe, A. A. Arani, and S. Esfandeh, Improving engine oil lubrication in light-duty vehicles by using of dispersing MWCNT and ZnO nanoparticles in 5W50 as viscosity index improvers (VII), Appl. Therm. Eng, vol.143, pp.493-506, 2018.

H. Wu, A study of the tribological behaviour of TiO 2 nano-additive water-based lubricants, Tribology Int, vol.109, pp.398-408, 2017.

A. Beheshti, Y. Huang, K. Ohno, I. Blakey, and J. R. Stokes, Improving tribological properties of oil-based lubricants using hybrid colloidal additives, Tribology Int, vol.144, p.106130, 2020.

N. Rajendhran, S. Palanisamy, P. Periyasamy, and R. Venkatachalam, Enhancing of the tribological characteristics of the lubricant oils using Ni-promoted MoS 2 nanosheets as nano-additives, Tribology Int, vol.118, pp.314-328, 2018.

N. W. Awang, An experimental study on characterization and properties of nano lubricant containing Cellulose Nanocrystal (CNC), Int. J. Heat Mass Transfer, vol.130, pp.1163-1169, 2019.

M. K. Ali, Improving the tribological characteristics of piston ring assembly in automotive engines using Al 2 O 3 and TiO 2 nanomaterials as nano lubricant additives, Tribology Intl, vol.103, pp.540-554, 2016.

H. J. Song, Z. Z. Zhang, X. H. Men, and Z. Z. Luo, A study of the tribological behavior of nano-ZnO-filled polyurethane composite coatings, Wear, vol.269, pp.79-85, 2010.

R. R. Sahoo and S. K. Biswas, Deformation and friction of MoS2 particles in liquid suspensions used to lubricate sliding contact, Thin Solid Films, vol.518, pp.5995-6005, 2010.

S. B. Mousavi, S. Z. Heris, and M. G. Hosseini, Experimental investigation of MoS 2 /diesel oil nanofluid thermophysical and rheological properties, Int. Commun. Heat Mass Transfer, vol.108, p.104298, 2019.

J. Tannous, Understanding the Tribochemical Mechanisms of IF-MoS 2 Nanoparticles Under Boundary Lubrication, Tribology Lett, vol.41, pp.55-64, 2011.

E. Z. Hu, Y. Xu, K. H. Hu, and X. G. Hu, Tribological properties of 3 types of MoS 2 additives in different base greases, Lubrication Science, vol.29, pp.541-555, 2017.

O. Elianov, Deposition of metal coatings containing fullerene-like MoS 2 nanoparticles with reduced friction and wear. Lubrication Science, vol.353, pp.116-125, 2018.

W. Osim, A. Stojanovic, J. Akbarzadeh, H. Peterlik, and W. H. Binder, Surface modification of MoS 2 nanoparticles with ionic liquid-ligands: towards highly dispersed nanoparticles, Chemical Commun, vol.49, issue.81, pp.9311-9313, 2013.

A. Singh, Synthesis, characterization, electrical and sensing properties of ZnO nanoparticles, Advanced Powder Technology, vol.21, pp.609-613, 2010.

E. Tang, G. Cheng, X. Ma, X. Pang, and Q. Zhao, Surface modification of zinc oxide nanoparticle by PMAA and its dispersion in aqueous system, Appl. Surface Science, vol.252, issue.14, pp.5227-5232, 2006.

S. Shahnazar, S. Bagheri, and S. B. Hamid, Enhancing lubricant properties by nanoparticle additives, Int J. hydrogen energy, vol.41, issue.4, pp.3153-3170, 2016.

A. Katiyar, A. N. Singh, P. Shukla, and T. Nandi, Rheological behavior of magnetic nanofluids containing spherical nanoparticles of Fe-Ni, Powder Technology, vol.224, pp.86-89, 2012.

R. K. Singh, A. K. Sharma, A. R. Dixit, A. Mandal, and A. K. Tiwari, Experimental investigation of thermal conductivity and specific heat of nanoparticles mixed cutting fluids, Materials Today: Proceedings, vol.4, issue.8, pp.8587-8596, 2017.

M. K. Ali, H. Xianjun, R. F. Turkson, Z. Peng, and X. Chen, Enhancing the thermophysical properties and tribological behaviour of engine oils using nano-lubricant additives, RSC Advances, vol.6, pp.77913-77924, 2016.

A. K. Rasheed, Heat transfer and tribological performance of graphene nanolubricant in an internal combustion engine, Tribology Int, vol.103, pp.504-515, 2016.

P. Rabaso, An investigation on the reduced ability of IF-MoS 2 nanoparticles to reduce friction and wear in the presence of dispersants, Tribology Lett, vol.55, issue.3, pp.503-516, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01298281

E. Z. Hu, Y. Xu, K. H. Hu, and X. G. Hu, Tribological properties of 3 types of MoS 2 additives in different base greases, Lubrication Science, vol.29, issue.8, pp.541-555, 2017.

L. Liu, Z. Huang, and P. Huang, Fabrication of coral-like MoS2 and its application in improving the tribological performance of liquid paraffin, Tribology Int, vol.104, pp.303-308, 2016.

J. Zhao, An investigation on the tribological properties of multilayer graphene and MoS 2 nanosheets as additives used in hydraulic applications, Tribology Int, vol.97, pp.14-20, 2016.

J. Tannous, Understanding the tribochemical mechanisms of IF-MoS 2 nanoparticles under boundary lubrication, Tribology Lett, vol.4, issue.1, pp.55-64, 2011.

R. Rosentsveig, Fullerene-like MoS 2 nanoparticles and their tribological behavior, Tribology Lett, vol.36, issue.2, pp.175-182, 2009.

H. Wu, An investigation on the lubrication mechanism of MoS 2 nano sheet in point contact: The manner of particle entering the contact area, Tribology Int, vol.107, pp.48-55, 2017.

H. Song, B. Wang, Q. Zhou, J. Xiao, and X. Jia, Preparation and tribological properties of MoS 2 /graphene oxide composites, Appl. Surface Science, vol.419, pp.24-34, 2017.

M. S. Charoo, M. F. Wani, M. Hanief, and M. A. Rather, Tribological Properties of MoS 2 Particles as Lubricant Additive on EN31 Alloy Steel and AISI 52100 Steel Ball, Materials Today: Proceedings, vol.4, pp.9967-9971, 2017.

I. Lahouij, B. Vacher, J. M. Martin, and F. Dassenoy, IF-MoS 2 based lubricants: Influence of size, shape and crystal structure, Wear, vol.296, pp.558-567, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01442278

C. P. Koshy, P. K. Rajendrakumar, and M. V. Thottackkad, Evaluation of the tribological and thermophysical properties of coconut oil added with MoS 2 nanoparticles at elevated temperatures, pp.288-308, 2015.

M. R. Ripoll, In-situ tribochemical sulfurization of molybdenum oxide nanotubes, Nanoscale, vol.10, issue.7, pp.3281-3290, 2018.

G. Paul, H. Hirani, T. Kuila, and N. C. Murmu, Nanolubricants Dispersed with Graphene and its Derivatives: An Assessment and Review of the Tribological Performance, Nanoscale, vol.11, issue.8, pp.3458-3483, 2019.

D. Cabaleiro, M. J. Pastoriza-gallego, M. M. Piñeiro, and L. Lugo, Characterization and measurements of thermal conductivity, density and rheological properties of zinc oxide nanoparticles dispersed in (ethane-1,2-diol+water) mixture, The J. Chem. Thermodynamics, vol.58, pp.405-415, 2013.

M. J. Pastoriza-gallego, L. Lugo, D. Cabaleiro, J. L. Legido, and M. M. Piñeiro, Thermophysical profile of ethylene glycol-based ZnO nanofluids, The J. Chem. Thermodynamics, vol.73, pp.23-30, 2014.

S. S. Sanukrishna, S. Vishnu, and M. J. Prakash, Experimental investigation on thermal and rheological behaviour of PAG lubricant modified with SiO 2 nanoparticles, J. Molecular Liquids, vol.261, pp.411-422, 2018.

M. J. Guimarey, Effect of ZrO 2 nanoparticles on thermophysical and rheological properties of three synthetic oils, J. Molecular Liquids, vol.262, pp.126-138, 2018.

S. Ingole, Tribological behavior of nano TiO 2 as an additive in base oil, Wear, vol.301, pp.776-785, 2013.

Y. Yang, C. Zhang, Y. Dai, and J. Luo, Tribological properties of titanium alloys under lubrication of SEE oil and aqueous solutions, Tribology Int, vol.109, pp.40-47, 2017.

H. Porwal, Tribological properties of silica-graphene nano-platelet composites, Ceramics Int, vol.40, pp.12067-12074, 2014.

T. Sui, Dispersibility and rheological behavior of functionalized silica nanoparticles as lubricant additives, Ceramics Int, vol.44, issue.15, pp.18438-18443, 2018.

M. Ding, The excellent anti-wear and friction reduction properties of silica nanoparticles as ceramic water lubrication additives, Ceramics Int, vol.44, issue.12, pp.14901-14906, 2018.

L. Chen and D. Zhu, Preparation and tribological properties of unmodified and oleic acid-modified CuS nanorods as lubricating oil additives, Ceramics Int, vol.43, issue.5, pp.4246-4251, 2017.

A. Juki?, F. Faraguna, I. Franji?, and S. Kuzmi?, Molecular interaction and viscometric behavior of mixtures of polyolefin and poly (styrene-co-dodecyl methacrylate-co-octadecyl methacrylate) rheology modifiers in solution of lubricating base oil, J. Indust. Eng. Chem, vol.56, pp.270-276, 2017.

P. Njiwa, Tribological properties of new MoS 2 nanoparticles prepared by Seed-Assisted solution technique, Tribology Lett, vol.55, issue.3, pp.473-481, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02045368

B. Aladag, Experimental investigations of the viscosity of nanofluids at low temperatures, Appl. Energy, vol.97, pp.876-880, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00707410

M. K. Ali, Fuel economy in gasoline engines using Al2O3/TiO2 nanomaterials as nanolubricant additives, App. Energy, vol.211, pp.461-478, 2018.

T. Luo, Smooth and solid WS 2 submicrospheres grown by a new laser fragmentation and reshaping process with enhanced tribological properties, Chemical Commun, vol.52, issue.66, pp.10147-10150, 2016.

D. Kumar, J. Daniel, and S. K. Biswas, Tribology of steel/steel interaction in oil-in-water emulsion; a rationale for lubricity, J. Colloid Interface Science, vol.345, pp.307-315, 2010.

P. Wu, A. D. Nikolov, and D. T. Wasan, Two-phase displacement dynamics in capillaries-nanofluid reduces the frictional coefficient, J. Colloid Interface Science, vol.532, pp.153-160, 2018.

K. Fan, Towards enhanced tribological performance as water-based lubricant additive: Selective fluorination of graphene oxide at mild temperature, J. Colloid Interface Science, vol.531, pp.138-147, 2018.

S. A. Jang, D. S. Lee, M. W. Lee, and S. H. Woo, Toxicity of phenanthrene dissolved in nonionic surfactant solutions to Pseudomonas putida P2. FEMS microbiology letters, vol.267, pp.194-199, 2007.

K. Sa?ek, E. Kaczorek, U. Guzik, and A. Zgo?a-grze?kowiak, Bacterial properties changing under Triton X-100 presence in the diesel oil biodegradation systems: from surface and cellular changes to mono-and dioxygenases activities, Environ. Science Pollution Research, vol.22, issue.6, pp.4305-4315, 2015.

R. N. Mehta, U. More, N. Malek, M. Chakraborty, and P. A. Parikh, Study of stability and thermodynamic properties of water-indiesel nanoemulsion fuels with nano-Al additive, Appl. Nanoscience, vol.5, issue.8, pp.891-900, 2015.

Y. Zhang, B. Huang, P. Li, X. Wang, and Y. Zhang, Tribological performance of CuS-ZnO nanocomposite film: The effect of CuS doping, Tribology Int, vol.58, pp.7-11, 2013.

N. H. Chen, An explicit equation for friction factor in pipe, Ind. Eng. Chem. Fundamentals, vol.18, issue.3, pp.296-297, 1979.

B. J. Mckeon, C. J. Swanson, M. V. Zagarola, R. J. Donnelly, and A. J. Smits, Friction factors for smooth pipe flow, J. Fluid Mechanics, vol.511, pp.41-44, 2004.

F. M. White and . Mechanics, , 2011.

W. Peiyi and W. A. Little, Measurement of friction factors for the flow of gases in very fine channels used for microminiature Joule-Thomson refrigerators, Cryogenics, vol.23, issue.5, pp.273-277, 1983.

J. P. Holman and W. J. Gajda, Experimental Methods for Engineers, 2001.

C. C. Chen, P. Liu, and C. H. Lu, Synthesis and characterization of nano-sized ZnO powders by direct precipitation method, Chem. Eng. J, vol.144, pp.509-513, 2008.

P. R. Wu, Fabrication and tribological properties of oil-soluble MoS 2 nanosheets decorated by oleic diethanolamide borate, J. Alloys Compounds, vol.770, pp.441-450, 2019.

M. J. Pastoriza-gallego, C. Casanova, J. L. Legido, and M. M. Piñeiro, CuO in water nanofluid: influence of particle size and polydispersity on volumetric behaviour and viscosity, Fluid Phase Equilibria, vol.300, issue.1-2, pp.188-196, 2011.

X. Liu, Exploring the effect of nanoparticle size on the tribological properties of SiO 2 /polyalkylene glycol nanofluid under different lubrication conditions, Tribology Int, vol.109, pp.467-472, 2017.

H. Yang, S. Schmid, R. Reich, and T. Kasun, Direct observations of emulsion flow in elastohydrodynamically lubricated contacts, J. Tribology, vol.128, pp.619-623, 2006.

H. Yang, S. Schmid, R. Reich, and T. Kasun, Numerical Simulation of an Oil Particle in Emulsion Lubrication, Tribology Trans, vol.50, issue.4, pp.453-457, 2007.

C. Cusano and H. Sliney, Dynamics of solid dispersions in oil during the lubrication of point contacts, Part I-Graphite, ASLE TRANS, vol.25, issue.2, pp.183-189, 1982.

C. Cusano and H. Sliney, Dynamics of Solid Dispersions in Oil During the Lubrication of Point Contacts, Part II-Molybdenum Disulfide, ASLE TRANS, vol.25, issue.2, pp.190-197, 1982.

J. Martin, N. Ohmae, and . Nanolubricants, , 2008.

M. Qu, Tribological study of polytetrafluoroethylene lubricant additives filled with Cu microparticles or SiO 2 nanoparticles, Tribology Int, vol.110, pp.57-65, 2017.

H. Wu, Friction and wear characteristics of TiO 2 nano-additive water-based lubricant on ferritic stainless steel, Tribology Int, vol.117, pp.24-38, 2018.