P. A. Maccarthy and A. M. Shah, Coron. Artery Dis, vol.14, p.109, 2003.

E. Suraniti, S. Ben-amor, P. Landry, M. Rigoulet, E. Fontaine et al., Angew. Chemie Int. Ed, vol.53, p.6655, 2014.

W. J. Cooper and R. O. Zika, Science, vol.220, p.711, 1983.

M. Song, J. Wang, B. Chen, and L. Wang, Anal. Chem, p.11537, 2017.

N. Klassen, D. Marchington, and H. C. Mcgowan, Anal. Chem, p.2921, 1994.

R. F. Nogueira, M. C. Oliveira, and W. C. Paterlini, Talanta, vol.66, p.86, 2005.

F. Rezende, R. P. Brandes, and K. Schröder, Antioxid. Redox Signal, vol.29, p.585, 2017.

Y. B. Tsaplev, J. Anal. Chem, p.506, 2012.

W. Chen, S. Cai, Q. Ren, W. Wen, and Y. Zhao, Analyst, vol.137, p.49, 2012.

R. Gulaboski, V. Mir?eski, R. Kappl, M. Hoth, and M. Bozem, J. Electrochem. Soc, vol.166, p.82, 2019.

R. Koncki, Crit. Rev. Anal. Chem, p.79, 2002.

I. Willner, F. Patolsky, and J. Wasserman, Angew. Chemie Int. Ed, vol.40, p.1861, 2001.

J. Shu and D. Tang, Anal. Chem, 2019.

S. Licht, N. Myung, and Y. Sun, Anal. Chem, p.954, 1996.

Y. B. Vogel, J. J. Gooding, and S. Ciampi, Chem. Soc. Rev, vol.48, p.3723, 2019.

I. T. Rodriguez, A. J. Borrill, and G. O'neil, , 2019.

D. Seo, S. Y. Lim, J. Lee, J. Yun, and T. D. Chung, ACS Appl. Mater. Interfaces, vol.10, p.33662, 2018.

J. Wang, J. Long, Z. Liu, W. Wu, and C. Hu, Biosens. Bioelectron, p.53, 2017.

H. Dai, S. Zhang, Z. Hong, and Y. Lin, Anal. Chem, p.9532, 2016.

W. Zhao, J. Xu, and H. Chen, Chem. Soc. Rev, vol.44, p.729, 2015.

W. Zhao, J. Xu, and H. Chen, Anal. Chem, p.615, 2018.

W. Zhao, J. Xu, and H. Chen, TrAC Trends Anal. Chem, p.307, 2016.

L. Wang, D. Han, S. Ni, W. Ma, W. Wang et al., Chem. Sci, vol.6, p.6632, 2015.

J. Tang, Y. Wang, J. Li, P. Da, J. Geng et al., J. Mater. Chem. A, issue.2, p.6153, 2014.

F. Liu, P. Wang, Q. Zhang, Z. Wang, Y. Liu et al., Electroanalysis, p.1809, 2019.

H. Dotan, K. Sivula, M. Grätzel, A. Rothschild, and S. C. Warren, Energy Environ. Sci, 0958.

Y. Y. Avital, H. Dotan, D. Klotz, D. A. Grave, A. Tsyganok et al., Nat. Commun, vol.9, p.4060, 2018.

D. Chen, H. Zhang, X. Li, and J. Li, Anal. Chem, p.2253, 2010.

W. Zhao, P. Yu, J. Xu, and H. Chen, Electrochem. Commun, vol.13, p.495, 2011.

L. Li, B. Li, H. Liu, M. Li, and B. Wang, J. Alloys Compd, vol.2020, p.152241

X. Zhang, L. Li, X. Peng, R. Chen, K. Huo et al., Electrochim. Acta, vol.108, p.491, 2013.

X. Xi, J. Li, H. Wang, Q. Zhao, and H. Li, Microchim. Acta, vol.182, p.1273, 2015.

F. Khan, N. Akhtar, N. Jalal, I. Hussain, R. Szmigielski et al., Microchim. Acta, vol.186, p.127, 2019.

M. Liu, Y. Yu, and W. Zhang, , vol.29, p.305, 2017.

Z. Yu, S. Lv, R. Ren, G. Cai, D. Tang et al., , vol.184, p.799, 2017.

H. Li, W. Hao, J. Hu, and H. Wu, Biosens. Bioelectron, p.225, 2013.

Z. Li, Y. Xin, and Z. Zhang, Anal. Chem, vol.87, p.10491, 2015.

M. Rehosek, D. Mitoraj, M. Bledowski, and R. Beranek, Electroanalysis, 2016.

Z. Yue, W. Zhang, C. Wang, G. Liu, and W. Niu, Mater. Lett, p.180, 2012.

S. Wang, Y. Zhu, X. Yang, and C. Li, Electroanalysis, vol.26, p.573, 2014.

A. G. Tamirat, J. Rick, A. A. Dubale, W. Su, and B. Hwang, Nanoscale Horizons, vol.1, 2016.

, Accepted Manuscript

P. Sharma, J. Jang, and J. S. Lee, ChemCatChem, vol.11, p.157, 2019.

Z. Li, C. Su, D. Wu, and Z. Zhang, Anal. Chem, p.961, 2018.

G. M. Ryu, M. Lee, D. S. Choi, and C. B. Park, J. Mater. Chem. B, p.4483, 2015.

Y. Zhang, T. Cao, X. Huang, M. Liu, H. Shi et al., Electroanalysis, 1787.

X. Du, L. Dai, D. Jiang, H. Li, N. Hao et al., Biosens. Bioelectron, p.706, 2017.

F. X. Wang, C. Ye, S. Mo, L. L. Liao, H. Q. Luo et al., Sens. Actuators B Chem, p.202, 2019.

J. Tang, J. Li, Y. Zhang, B. Kong, Y. Yiliguma et al., Anal. Chem, vol.87, p.6703, 2015.

H. Saada, R. Abdallah, B. Fabre, D. Floner, S. Fryars et al., , vol.6, p.613, 2019.

P. S. Bassi, L. Xianglin, Y. Fang, J. S. Loo, J. Barber et al., Phys. Chem. Chem. Phys, vol.18, 2016.

, We report a straightforward method to prepare ?-Fe 2 O 3 layers on fluorine-doped SnO 2 and we use these surfaces in a 3D printed photoelectrochemical cell for the PEC sensing of H 2 O 2 . These systems exhibit a large linear range, a good reusability and allow to reliably detect H 2 O 2 down to a sub-micromolar concentration

, Accepted Manuscript