R. Martin, A. Tortajada, F. Juliá-hernández, M. Borjesson, T. Moragas et al., Transition-Metal-Catalyzed Carboxylation Reactions with Carbon Dioxide, Organometallics, vol.34, pp.543-546, 2014.

J. Takaya, N. Iwasawa, K. Nakamae, M. Tanaka, B. Kure et al., Synthesis, structure, and catalysis of palladium complexes bearing a group 13 metalloligand: remarkable effect of an aluminum-metalloligand in hydrosilylation of CO 2, J. Organomet. Chem, vol.139, pp.9457-9461, 2016.

F. Organosilanes-;-bertini, M. Glatz, B. Stoger, M. Peruzzini, L. F. Veiros et al., Catal. Lett, vol.148, 1162.

, Methanol Catalyzed by Mn(I) PNP Pincer Complexes under Mild Reaction Conditions

J. Catal-;-guzmán, P. García-orduña, V. Polo, F. J. Lahoz, L. A. Oro et al., Ir-catalyzed selective reduction of CO 2 to the methoxy or formate level with HSiMe(OSiMe 3 ) 2, Catal. Sci. Technol, vol.9, pp.2858-2867, 2019.

W. Sattler, G. Parkin, A. Rit, A. Zanardi, T. P. Spaniol et al., A Cationic Zinc Hydride Cluster Stabilized by an N-Heterocyclic Carbene: Synthesis, Reactivity, and Hydrosilylation Catalysis, J. Am. Chem. Soc, vol.134, 2012.

. Int, M. Tüchler, L. Gärtner, S. Fischer, A. D. Boese et al., Efficient CO 2 Insertion and Reduction Catalyzed by a Terminal Zinc Hydride Complex, Angew. Chem. Int. Ed, vol.53, pp.6906-6909, 2014.

C. C. Chong and R. Kinjo, Hydrophosphination of CO 2 and Subsequent Formate Transfer in the 1,3,2-Diazaphospholene-Catalyzed N-Formylation of Amines

. Chem and . Int, , vol.54, 2015.

K. Motokura, C. Nakagawa, R. A. Pramudita, and Y. Manaka, Formate-Catalyzed Selective Reduction of Carbon Dioxide to Formate Products using Hydrosilanes, ACS Sustain. Chem

. Eng, , vol.7, pp.11056-11061, 2019.

R. A. Pramudita and K. Motokura, Transformative reduction of carbon dioxide through organocatalysis with silanes, Green Chem, vol.20, pp.4834-4843, 2018.

M. Rauch, Z. Strater, and G. Parkin, Selective Conversion of Carbon Dioxide to Formaldehyde via a Bis(silyl)acetal: Incorporation of Isotopically Labeled C 1 Moieties Derived from Carbon Dioxide into Organic Molecules, J. Am. Chem. Soc, vol.141, pp.17754-17762, 2019.

D. Specklin, F. Hild, C. Fliedel, C. Gourlaouen, L. F. Veiros et al., Accessing Two-Coordinate Zn II Organocations by NHC Coordination: Synthesis, Structure, and Use as ?-Lewis Acids in Alkene, Alkyne, and CO 2 Hydrosilylation, Bull. Chem. Soc. Jpn, vol.23, 1945.

J. Chen, L. Falivene, L. Caporaso, L. Cavallo, E. Y. Chen et al., Selective reduction of CO 2 to CH 4 by tandem hydrosilylation with mixed Al/B catalysts, J. Am. Chem. Soc, vol.138, pp.5321-5333, 2016.

, Decamethylscandocinium-hydrido-(perfluorophenyl)-borate: fixation and tandem tris(perfluorophenyl)-borane catalyzed Deoxygenative hydrosilation of carbon dioxide

;. Sci, F. A. Leblanc, W. E. Piers, and M. Parvez, Selective Hydrosilation of CO 2 to a Bis(silylacetal) Using an Amido Bipyridyl-Ligated Organoscandium Catalyst, 2013.

D. W. Beh, W. E. Piers, B. S. Gelfand, and J. Lin, Tandem Deoxygenative hydrosilation of carbon dioxide with a cationic scandium hydridoborate and B(C 6 F 5 ) 3, Angew. Chem. Int. Ed, vol.53, pp.95-101, 2014.

T. Matsuo and H. Kawaguchi, From Carbon Dioxide to Methane: Homogeneous Reduction of Carbon Dioxide with Hydrosilanes Catalyzed by Zirconium-Borane Complexes, J. Am. Chem

L. Soc-;-b)-luconi, A. Rossin, G. Tuci, Z. Gafurov, and D. Lyubov, , vol.128, pp.12362-12363, 2006.

M. Trifonov, A. A. Cicchi, S. Ba, H. Pham-huu, C. Yakhvarov et al., Benzoimidazole-Pyridylamido Zirconium and Hafnium Alkyl Complexes as Homogeneous Catalysts for Tandem Carbon Dioxide Hydrosilylation to Methane, ChemCatChem, vol.11, pp.495-510, 2019.

Y. Jiang, O. Blacque, T. Fox, and H. Berke, Catalytic CO 2 Activation Assisted by Rhenium Hydride/B(C 6 F 5 )3 Frustrated Lewis Pairs-Metal Hydrides Functioning as FLP Bases, J. Am. Chem. Soc, vol.135, pp.7751-7760, 2013.

S. J. Mitton, L. Turculet, L. González-sebastián, M. Flores-alamo, J. J. Garc?á et al., Mild Reduction of Carbon Dioxide to Methane with Tertiary Silanes Catalyzed by Platinum and Palladium Silyl Pincer Complexes, Organometallics, vol.18, pp.7186-7194, 2012.

F. Gu, L. B. Qu, and Z. Ke, Mechanism of Si-H Bond Activation for Lewis Acid PBP-Ni-Catalyzed Hydrosilylation of CO 2 : The Role of the Linear SN2 Type Cooperation

, ACS Catal, vol.9, pp.5279-5289, 2019.

F. T. Edelmann, Recent progress in the Chemistry of Metal Amidinates and Guanidinates: Synthesis, Catalysis and Materials in Advances in Organometallic Chemistry, pp.55-374, 2013.

M. A. Dureen, D. W. Stephan, A. R. Cabrera, R. S. Rojas, M. Valderrama et al., Synthesis of new asymmetric substituted boron amidines-reactions with CO and transfer hydrogenations of phenylacetylene, Res. Chem. Intermed, vol.132, pp.113-133, 2010.

S. Moreno, A. Ramos, F. Carrillo-hermosilla, A. Rodríguez-diéguez, D. García-vivó et al., Selective Three-Component Coupling for CO 2 Chemical Fixation to Boron Guanidinato Compounds, Inorg. Chem, vol.57, pp.8404-8413, 2018.

/. Al, N. Szynkiewicz, A. Ordyszewska, J. Chojnacki, and R. Grubba, Frustrated Lewis Pairs in Dipolar Activation and Hydrophosphination: Reactions with CO 2 and SO 2, Organometallics, vol.38, pp.27749-27753, 2019.

W. E. Piers, A. J. Marwitz, and L. G. Mercier, Mechanistic Aspects of Bond Activation with

. Perfluoroarylboranes, Inorg. Chem, vol.50, 2011.

H. E. Abdou, A. A. Mohamed, J. M. L?pez-de-luzuriaga, and J. P. Fackler, Tetranuclear Gold(I) Clusters with Nitrogen Donor Ligands: Luminescence and X-Ray Structure of Gold(I)

, Naphthyl Amidinate Complex. J. Clust. Sci, vol.15, pp.397-411, 2004.

S. Inoue, S. Driess, M. Enthaler, and S. , Intermolecular Hydrogen-Fluorine Interaction in Dimolybdenum Triply Bonded Complexes Modified by Fluorinated Formamidine Ligands for the Construction of 2D-and 3D-Networks, The molecular structure of 1-H·(toluene) was reported in: Krackl, pp.2103-2111, 2011.

B. Birkmann, T. Voss, S. J. Geier, M. Ullrich, G. Kehr et al., Frustrated Lewis pairs and ring-opening of THF, dioxane, and thioxane, Organometallics, vol.29, pp.5310-5319, 2010.

C. Weetman, M. S. Hill, M. F. Mahon, H. Liu, K. Kulbitski et al., Magnesium Catalysis for the Hydroboration of Carbodiimides, Organoactinide-Catalyzed Monohydroboration of Carbodiimines. Chem. Eur, vol.22, 2016.

, J, vol.24, pp.5738-5742, 2018.

A. V. Protchenko, J. Urbano, J. A. Abdalla, J. Campos, D. Vidovic et al., Electronic Delocalization in Two and Three Dimensions: Differential Aggregation in Indium, Metalloid" Clusters. Angew. Chem.Int, vol.56, pp.15098-15102, 2017.

U. Braun, T. Habereder, H. Noth, H. Piotrowski, and M. Warchhold, Triaminoboranes and Their Metallation to N-Lithiotriaminoboranes, Eur. J. Inorg. Chem, pp.1132-1145, 2002.

, Effective ionic radius for 3-coordinate B 3+, pp.0-010

, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr., Sect. A, vol.32, pp.751-767, 1976.

M. Bayram, D. Blaser, C. Wolper, and S. Schulz, Syntheses and Structures of Bis-Amidinate-Alane Complexes, Organometallics, vol.33, pp.2080-2087, 2014.

S. Dagorne, I. A. Guzei, M. P. Coles, and R. F. Jordan, Synthesis and Structures of Cationic Aluminum and Gallium Amidinate Complexes, J. Am. Chem. Soc, vol.122, 2000.

C. Jones, P. C. Junk, M. Kloth, K. M. Proctor, and A. Stasch, Bulky amidinato complexes and amidine adducts of Al, Ga and In halides, Polyhedron, vol.25, pp.1592-1600, 2006.

Y. Tsai, W. Lo, Q. Zhao, S. Schmidt, S. Schulz et al., Synthesis and Structural Characterization of New Zinc Amidinate Complexes, Organometallics, vol.97, pp.6097-6103, 2010.

, Due to poor solubility of this compound at low temperature no comprehensive NMR data could be collected

P. Laszlo and M. Teston, Determination of the acidity of Lewis acids, J. Am. Chem. Soc, vol.112, pp.8750-8754, 1990.

M. A. Beckett, G. C. Strickland, J. R. Holland, and S. Varma, A convenient NMR method for the measurement of Lewis acidity at boron centres: correlation of reaction rates of Lewis acid initiated epoxide polymerizations with Lewis acidity, Polymer, vol.37, pp.4629-4631, 1996.

Z. M. Heiden and B. L. Thompson, Influence of Lewis Acid Strength on Molecule Activation

, The Essential Guide to Lewis Acids

G. J. Britovsek, J. Ugolotti, and A. J. White, From B(C 6 F 5 ) 3 to B(OC 6 F 5 ) 3 : Synthesis of (C 6 F 5 ) 2 BOC 6 F 5 and C 6 F 5 B (OC 6 F 5 ) 2 and their relative Lewis acidity, Organometallics, vol.24, pp.1685-1691, 2005.

I. B. Sivaev and V. I. Bregadze, Lewis acidity of boron compounds, Coord. Chem. Rev, vol.270, pp.75-88, 2014.

, The amounts of CO 2 (n(CO 2 ) 0 ), used for the reactions in sealed NMR tubes, were estimated from the ideal gas law equation

, C 6 D 6 or C 6 D 5 Br, respectively) were used as references, The following signals in the corresponding 1 H NMR spectra (25 °C, vol.3

, equiv) in the presence of 1-B/Al(C 6 F 5 ) 3 (toluene) 0.5 (([B] 0 = [Al] 0 = 1 mol%) proceeded instantly in C 6 D 6 at room temperature resulting in 27% conversion of hydrosilane and formation of b in 66% yield

D. W. Stephan, D. Voicu, M. Abolhasani, R. Choueiri, G. Lestari et al., Microfluidic studies of CO 2 sequestration by frustrated Lewis pairs, J. Am. Chem. Soc, vol.48, pp.3875-3880, 2015.

Z. M. Heiden and A. P. Lathem, Establishing the hydride Donor Abilities of Main Group Hydrides, Organometallics, vol.34, pp.1818-1827, 2015.

M. Horn, L. H. Schappele, G. Lang-wittkowski, H. Mayr, A. R. Ofial et al., Towards a Comprehensive Hydride Donor Ability Scale, Chem. Eur. J, vol.19, pp.249-263, 2013.

A. Krajewski, Y. Niu, G. S. Kiruba, and J. K. Lee, Chem. Sci, vol.10, pp.8002-8008, 2019.

E. A. Jaseer, M. N. Akhtar, M. Osman, A. Al-shammari, H. B. Oladipo et al., Solvent-free iridium-catalyzed CO 2 hydrosilylation: experiments and kinetic modeling, Cat. Sci. Technol, vol.3, pp.274-279, 2015.

J. M. Blackwell, W. E. Piers, M. Parvez, and R. Mcdonald, Solution and Solid-State Characteristics of Imine Adducts with Tris(pentafluorophenyl)borane, Organometallics, vol.21, pp.1400-1407, 2002.

Z. Yang, B. Yu, H. Zhang, Y. Zhao, G. Ji et al., Methylation of secondary aniline f to tertiary g can be achieved with CO 2 /hydrosilane under mild conditions in the presence of B(C 6 F 5 ) 3 , see: (a), Z. B(C 6 F, vol.5

A. Tlili, E. Blondiaux, and X. Frogneux, Green Chemistry, vol.17, pp.4189-4193, 2015.

C. Fang, C. Lu, M. Liu, Y. Zhu, Y. Fu et al., Selective Formylation and Methylation of Amines using Carbon Dioxide and Hydrosilane Catalyzed by Alkali-Metal Carbonates, Green Chem, vol.17, pp.7876-7881, 2015.

, Section for details) and characterized by 1 H, 19 F{ 1 H}, 13 C{ 1 H} NMR spectroscopy (Figures S18, S20 and S21, respectively). Unexpectedly, the stoichiometric reactions of 1-SiEt 3 with B(C 6 F 5 ) 3 , attempted under various conditions

B. Free, C 6 F 5 ) 3 and mixtures of unidentified compounds were systematically observed by 19 F NMR spectroscopy. Also, no conclusive data could be obtained from 11 B and 29 Si NMR

L. K. Allen, R. Garcia-rodriguez, D. S. Wright, D. J. Parks, J. M. Blackwell et al., Stoichiometric and catalytic Si-N bond formation using the p-block base Al(NMe 2 ) 3 . Dalton Trans, Generation of an intermediary hydrido complex (Me 2 N) 2 AlH from Al(NMe 2 ) 3 and PhSiH 3 was postulated, vol.44, pp.3090-3098, 2000.

W. E. Piers, A. J. Marwitz, and L. G. Mercier, Mechanistic Aspects of Bond Activation with Perfluoroarylboranes, Inorg. Chem, pp.50-12252, 2011.

G. I. Nikonov, S. F. Vyboishchikov, and O. G. Shirobokov, Facile Activation of H?H and Si?H Bonds by Boranes, J. Am. Chem. Soc, vol.134, pp.5488-5491, 2012.

D. J. Parks, R. E. Spence, and W. E. Piers, Bis(pentafluorophenyl)borane: Synthesis, Properties, and Hydroboration Chemistry of a Highly Electrophilic Borane Reagent

D. J. Parks, W. E. Piers, and G. P. Yap, Synthesis, Properties, and Hydroboration Activity of the Highly Electrophilic Borane Bis(pentafluorophenyl)borane, HB(C 6 F 5 ) 2, Organometallics, vol.34, pp.5492-5503, 1995.

G. Hagele and M. Weidenbruch, Zusammenhange zwischen chemischen Verschiebungen, Kopplungskonstanten und (p-d)?-Wechselwikungen, Chem. Ber, vol.106, pp.460-470, 1973.

A. G. Massey, A. Park, and F. G. Stone, Tris(pentafluorophenylboron), Proc. Chem. Soc, p.212, 1963.

M. C. Chen, J. A. Roberts, and T. J. Marks, New mononuclear and polynuclear perfluoroarylmetatate cocatalysts for stereospecific olefin polymerization, Organometallics

J. Zheng, S. Chevance, C. Darcel, and J. Sortais, Selective reduction of carboxylic acids to aldehydes through manganese catalysed hydrosilylation, Chem. Commun, vol.49, pp.10010-10012, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00870857

W. Maringgele and A. Meller, Synthese von Silylamident und deren Umsetzung mit Boran-derivaten, Z. Anorg. Allg. Chem, vol.445, pp.107-121, 1978.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb et al., , 2009.

A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A, p.3098, 1988.

A. D. Becke, Density -functional thermochemistry. III. The role of exact exchange, J. Chem. Phys, p.5648, 1993.

A. V. Marenich, C. J. Cramer, and D. G. Truhlar, Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions, J. Phys. Chem. B, p.6378, 2009.

C. Gonzales and H. B. Schlegel, An improved algorithm for reaction path following, J. Chem. Phys, p.2154, 1989.

A. E. Reed, L. A. Curtiss, and F. Weinhold, Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint, M. Sheldrick, SHELXL-97, vol.88, pp.899-926, 1988.

G. M. Sheldrick, . Acta, and . Cryst, , vol.64, pp.112-122, 2008.