D. Bourissou, O. Guerret, F. P. Gabba?, and G. Bertrand, 39-91; b) Carbene Chemistry: From Fleeting Intermediates to Powerful Reagents, Fontis Media & Marcel Dekker, vol.100, 2000.

P. L. Timms-;-b)-p, . L. Timms-;-p, and . Timms, J. Am. Chem. Soc, vol.89, pp.4585-4589, 1967.

H. F. Bettinger, J. Am. Chem. Soc, vol.128, pp.2534-2535, 2006.

M. Lavrov, A. V. Osiac, J. Pipa, and . Roepcke, Plasma Sources Sci. Technol, vol.12, pp.454-455, 1984.

. Angew, B. Chem-;-r.-kinjo, M. A. Donnadieu, G. Celik, G. Frenking et al., Coord. Chem. Rev, vol.96, pp.535-559, 1984.

H. Braunschweig, R. Dewhurst, and V. H. Gessner, b) H. Braunschweig, M. Colling, vol.42, pp.1-51, 2001.

H. Braunschweig, C. Kollann, and U. Englert, Angew. Chem. Int. Ed, vol.37, pp.3179-3180, 1998.

A. H. Cowley, V. Lomelí, and A. Voigh, J. Am. Chem. Soc, vol.120, pp.6401-6402, 1998.

J. Bauer, S. Bertsch, H. Braunschweig, R. D. Dewhurst, K. Ferkinghoff et al., Chem. Eur. J, vol.19, pp.17608-17612, 2013.

Z. Hui, T. Watanabe, and H. Tobita, Organometallics, vol.36, pp.4816-4824, 2017.

H. Braunschweig, M. Forster, and K. Radacki, Angew. Chem, vol.118, pp.8036-8038, 2006.

, Angew. Chem. Int. Ed, vol.45, pp.2132-2134, 2006.

R. Okamura, K. Tada, K. Matsubara, M. Oshima, and H. Suzuki, Organometallics, vol.20, pp.4772-4774, 2001.

H. Braunschweig, C. Burschka, M. Burzler, S. Metz, and K. Radacki, Angew. Chem. Int. Ed, vol.45, pp.4352-4355, 2006.

, Angew. Chem, vol.118, pp.4458-4461, 2006.

K. Geetharani, S. K. Bose, B. Varghese, and S. Ghosh, Chem. Eur. J, vol.16, pp.11357-11366, 2010.

H. Braunschweig, R. D. Dewhurst, K. Kraft, and K. Radacki, Angew. Chem, vol.121, pp.5951-5954, 2009.

, Angew. Chem. Int. Ed, vol.48, pp.5837-5840, 2009.

H. Braunschweig, D. Rais, and K. Uttinger, Angew. Chem., Int. Ed, vol.44, pp.3763-3766, 2005.

). H. Braunschweig, M. Colling, C. Hu, K. Radacki-;-b, ). H. Braunschweig et al., Angew. Chem., Int. Ed, vol.41, pp.8071-8073, 2002.

). D. Coombs, S. Aldridge, C. Jones, D. J. Willock-;-b)-d, J. K. Kays et al., Angew. Chem. Int. Ed, vol.125, pp.3513-3516, 2003.

D. L. Kays, A. Rossin, J. K. Day, L. Ooi, and S. Aldridge, , pp.399-410, 2006.

B. Blank, M. Colling-hendelkens, C. Kollann, K. Radacki, D. Rais et al., Chem. Eur. J, vol.13, pp.4770-4781, 2007.

M. Légaré, G. Bélanger-chabot, R. D. Dewhurst, E. Welz, I. Krummenacher et al., Science, vol.359, pp.896-900, 2018.

). D. Sharmila, K. Yuvaraj, S. K. Barik, D. K. Roy, K. K. Chakrahari et al., Organometallics, vol.19, pp.5074-5083, 2013.

K. Yuvaraj, M. Bhattacharyya, R. Prakash, V. Ramkumar, S. Ghosh et al., J. Organomet. Chem, vol.22, pp.79-86, 2016.

S. Sahoo, K. H. Reddy, R. S. Dhayal, S. M. Mobin, V. Ramkumar et al., Inorg. Chem, vol.48, pp.10375-10383, 2009.

S. K. Bose, K. Geetharani, B. Varghese, S. Ghosh, . Inorg et al., Eur. J. Inorg. Chem, vol.50, pp.1483-1487, 2009.

, Although theoretically calculated bond distances of 1 are comparable with X-ray determined structure bond distances, the W-W bond distance is significantly longer in optimized structure. The calculated 11 B NMR of 1 shows two peaks at ??= 83.2 and 57, vol.8

, The calculated 1 H NMR shows two peaks at ? = -5.74 and -5.87 ppm in the upfield region

S. K. Bose, D. K. Roy, P. Shankhari, K. Yuvaraj, B. Mondal et al., Angew. Chem. Int. Ed, vol.19, pp.3640-3648, 2005.

C. E. Housecroft, D. M. Nixon, and A. L. Rheingold, J. Organomet. Chem, vol.609, pp.89-94, 2000.

K. Wade, D 1971, 0, 792?793; b) K. Wade, Adv. Inorg. Chem. Radiochem, vol.18, pp.1315-1323, 1976.

, )2} and {Fe(CO)2} contribute 2, 1, 3 and 0 SEP respectively. Whereas for 2 and 2', 2{BH}, 2{Cp*W(CO)2} and {M(CO)3} contribute 2, 3 and 1 SEP respectively

X. Lei, M. Shang, and T. P. Fehlner, J. Am. Chem. Soc, vol.121, pp.1275-1287, 1999.

H. Yan, A. M. Beatty, and T. P. Fehlner, Organometallics, vol.21, pp.5029-5037, 2002.

X. Lei, M. Shang, and T. P. Fehlner, J. Am. Chem. Soc, vol.120, pp.2686-2687, 1998.

M. L. Green, J. D. Hubert, and P. Mountford, J. Chem. Soc, pp.3793-3800, 1990.

U. Koelle and J. Kossakowski, Inorg. Synth, vol.29, pp.225-228, 1992.

G. E. Ryschkewitsch and K. C. Nainan, Inorg. Synth, vol.15, pp.113-114, 1974.

R. Bag, S. Saha, R. Borthakur, B. Mondal, T. Roisnel et al., Inorganics, vol.7, p.27, 2019.

S. Aldridge, M. Shang, and T. P. Fehlner, J. Am. Chem. Soc, vol.120, pp.2586-2598, 1998.

R. Bag, B. Mondal, K. Bakthavachalam, T. Roisnel, and S. Ghosh, Pure Appl. Chem, vol.90, pp.665-675, 2018.

S. Apex2 and . Sadabs,

A. Bruker and . Inc, , 2004.

G. M. Sheldrick, SHELXS-97, 1997.

G. M. Sheldrick, Acta Crystallogr., Sect. C: Struct. Chem, vol.71, pp.3-8, 2015.

M. J. Frisch, , 2010.

). A. Becke, ;. C. Lee, W. Yang, and R. G. Parr, 785?789; c) A. D, Phys. Rev. B: Condens. Matter Mater. Phys, vol.38, pp.5648-5651, 1988.

). F. London, Radium 1937, 8, 397?409; b) R. Ditchfield, Mol. Phys. 1974, 27, 789?807; c), J. Am. Chem. Soc, vol.112, pp.8251-8260, 1990.

E. D. Glendening, A. E. Reed, J. E. Carpenter, F. Weinhold, ;. et al., Valency and bonding: A natural bond orbital donor-acceptor perspective, vol.88, pp.899-926, 1988.

T. Lu and F. Chen, J. Comput. Chem, vol.33, pp.580-592, 2012.

R. F. Bader-;-r, . F. Bader-;-r, and . Bader, 7314?7323; c), Atoms in Molecules: a Quantum Theory, vol.102, pp.893-928, 1990.

I. I. Gaussview-;-dennington, R. T. Keith, J. Millam, K. Eppinnett, W. L. Hovell et al., , 2003.

G. A. Zhurko,