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Abstract

Purpose: In context of head-and-neck radiotherapy, this wtaidhs to compare MR image quality
according to diagnostic (DIAG) and radiotherapy RE&tups and to optimize an MRI-protocol
(including 3D T and k-weighted sequences) for dose-planning (based eudpsCT generation).

Materials and methods: To compare DIAG and RT setups, Signal-to-Noise-dR#8NR) and
percentage-image-uniformity (PIU) were computed Tanimages of phantoms and volunteers.
Influence of the sample conductivity on SNR wasngfi@d using home-made phantoms. To obtain
reliable . and T images for RT-planning, an experimental design pexformed on volunteers by
using SNR, Contrast-to-Noise-Ratio (CNR) and Meair@@n-Score (MOS). Further, pseudo-CTs
were generated from 8 patients iinages with a state-of-art deep-learning methdusé pseudo-

CTs were evaluated by mean-absolute-error (MAE)raadn-error (ME).

Results: SNR was higher for DIAG-setup compared to RT-sef8plR-ratio = 1.3). A clear
influence of the conductivity on SNR was observBtl was higher for DIAG-setup (38.8%)
compared to RT-setup (33.5%). Regarding the prbtopptmization, SNR, CNR, and MOS were
20.6, 6.16, and 3.91 for the optimalsequence. For the optimal 3equence, SNR, CNR and MOS
were 25.6, 44.46 and 4.0. In the whole head-an#-aeza, the mean MAE and ME of the pseudo-
CTs were 82.8 and -3.9 HU.

Conclusion: We quantified the image quality decrease inducessiryg an RT-setup for head-and-
neck radiotherapy. To compensate this decreaseviRh protocol was optimized by using an
experimental design. This protocol of 15 minutesvfates accurate images which could be used for

MRI-dose-planning in clinical practice.

Keywords: radiotherapy treatment planninglRI- protocol optimization pseudo-
CT



Résumé

Objectif : Cette étude compare la qualité d’'IRM obtenues &irgi systemes d’acquisition dédiés
au diagnostic (DIAG) et dédiés
protocole d'IRM permettant le calcul de dose witisdes pseudo-dvanographie qui a été validé sur

huit patients.

Matériels et méthodes :Pour comparer les systemes d’acquisition, le rapgpgnal-sur-bruit et le
pourcentage-d’uniformité-de-I'image (PIU) ont étéloulés sur des images pondérées erdd
fantdbmes et de volontaires. Afin d’obtenir des iem@déquates pour la planification, un plan
d’expérience a été réalisé. Par la suite, pour paiients, des pseudo-scanographies ont été
générées a partir d'une meéthode d’apprentissagerutaet évalués en utilisant I'erreur-moyenne-

absolue (MAE) et I'erreur-moyenne (ME).

Résultats : Le rapport-signal-sur-bruit était supérieur de 308tir le systeme-DIAG comparé au
systeme-RT. Le PIU était supérieur pour le syst&ifgs (39%) comparé au systeme RT (33%).
Le protocole optimisé comprenant deux séquencesiid® 15 minutes. Avec ce protocole, les
moyennes des MAE et ME des pseudo-scanographiéségesur toute la sphere ORL des patients,
étaient de 82.8 et -3.9 UH (unités Hounsfield).

Conclusion : La perte en qualité dimages induite par l'utilisat d’'un systéeme-RT pour la
radiothérapie ORL a été quantifiee. Pour compeostte perte, un protocole d'IRM a été optimisé
en utilisant un plan d’expérience. Ce protocoleldeminutes permet de générer des pseudo-
scanographies pour la planification de radiothérapi

Mots clés : planification de radiothérapie externe a partir d’

pseudo-CT.



Introduction

In radiotherapy, X-ray imaging (CT-scan and CBC3§he main imaging modality for treatment
planning and delivery. CT-scan provides tissue tedecdensity information required for dose
calculation. CBCT allows fast imaging for patierdsgioning and tracking/gating of the tumor.
However, X-ray imaging has a poor soft tissue @sttand is ionizing. MRI currently used for
diagnosis has a better soft tissue contrast andoisionizing. MRI could improve patient
positioning, delineations, and dose calculationtake full advantage of this imaging, an MRI-only
workflow has been proposed. This new workflow lgadnew open research areas as MRI
acquisition in treatment position and MRI dose gkltton.

MR image acquisition in treatment position is thetfstep of an MRI-only radiotherapy workflow.
This acquisition ensures reproducibility of patigmbsitioning, which is required to deliver
accurately the dose in the desired localizatioraddand-neck is one of the most challenging sites
for this acquisition. The main difficulty is thatd radiotherapy treatment (RT) equipment, such as
radiation therapy flat couch, head-and-shoulderkinbhsad board, do not fit within the standard
diagnostic coil system. To address this issue, iBpaeceiving coils for RT planning (RT coil
system) were designed by the manufactutetsHowever, these setups are composed of flexible
coils poorly fitting the patient anatomy, which degsed the image quality. In a limited number of
studies* ° the image quality achieved by a RT coil systens waantified, and compared with a
diagnostic coil system. In Liney et 4.a commissioning of a 1.5 T MRI equipped with aH€Rd-
and-neck coils was conducted. Volunteer and phar&Dnscans were used to determine the image
guality. However, the coverage of the RT coils was small to acquire correctly images of the
lower neck region, limiting its use to some spectfimor sites. In another study, Wong et®al.
assessed the image quality of a 1.5 T MRI with asBffing composed of two flexible coils and a
customized bi-lateral coil holder. The image gyaldssessment was conducted by following the
standard ACR MRI phantom te§t Nevertheless, these tests were not performedlimical
conditions on volunteers as we propose in our study

MRI dose calculation is the main challenge of an MRy workflow. As there is no direct
mapping from MR intensities to electron densityistihesearch area remains an outstanding
problem. To address this issue, several pseudodb€&rgtion methods from MRI were proposed.
These methods can be roughly divided in bulk dgrisitlas-based °, and learning-based methods
(patch-based® ! and deep learning methods (DLN#™9. The DLMs appeared to be the most
efficient and accurate methods in the literatuteese methods aim to model the relations between
HU values of the CTs and the MR intensities byniraj a neuronal network. Once the optimal

network parameters are estimated, the model céinddl/ applied to a test patient MRI to generate



its corresponding pseudo-CT.

The aim of this study was firstly to compare theaga quality provided by a diagnostic (DIAG) and
RT coil systems and to optimize an MRI protocol iead-and-neck RT planning with volunteers in
treatment position and the RT setup ly, to evaluate the accuracy of pseudo-CTs obtained
from our optimized MRIs. These pseudo-CTs were gead by a state-of-the-art DL ®which
was compared favorably with other methods in ttegdiure.

Materials and Methods

All experiments were conducted according to thecgdores approved by the local Institutional

Review Board. Written informed consent was obtaifmech all participants.

Image acquisitions

Comparison and optimization studies

MRI of the manufacturer phantom (GE cylindrical ptean), a salted home-made phantom and
three healthy volunteers in head-and-neck treatmesition, was performed at 1.5 T (Optima MR
450W, GE Healthcare, Milwaukee, USA). For the DIMIRI acquisitions, the standard coil system
(32 channels head-and-neck units) was used. FARTHRIRI acquisitions, the specific coil system
(16 channels GE MR Radiation-Oncology suite) withdguipment (five points head-and-shoulder
mask, radiotherapy flat couch and head board) vsasl.uFigure 1 shows the DIAG and RT caoil
systems. A RT protocol was designed with isotr@licT: gradient echo and 3D, Tast spin echo
(CUBE) sequences. The &nd T sequences were applied with three and four dispacameter
sets (Table 1). The acquisitions were performedagittal orientation and reconstructed in axial
orientation to minimize acquisition time and availiasing, except for the RT>Tsequences. To
allow reliable estimation of noise and contrasioratith parallel imaging acceleratibh all images
were acquired twice. This double acquisition waseeated five times on manufacturer phantom and

each volunteer.

Pseudo-CT generation

Eight patients treated for head-and-neck cancee wensidered. These patients received a CT scan



and MRI in treatment position. CT scans were aeguwith a Philips large-bore scanner (120 Ky, 2
mm slice thickness). For MRI, 3D->-Iveighted sequences were performed using our apgoni
protocol (TE = 100.3 ms, TR = 3000 ms, flip angl8G2, FOV = 410 mm, voxel sizes = 1.6 im
To correct MRI non-uniformity, the images were pogessed by using N4 bias-field correction and
histogram matching as in Dowling et &4lEach CT was registered to its corresponding MR&h &

rigid registration, followed by a non-rigid registion.

Image quality metrics

To evaluate the MR image quality Signal-to-Noisdi®RéSNR), Contrast-to-Noise Ratio (CNR),
Percentage Image Uniformity (PIU) and Mean OpinBeore (MOS) were considered. These

metrics were described in the paragraphs below.

Signal-to-Noise Ratio

The Signal-to-Noise Ratio (SNR) is a metric usecestimate the quality of the acquired signal
related to the noise. A simple method to deternSiNg is to compute, on a single image, the ratio
between the mean of the signal in the region dadrest (ROI) and the standard deviation in the
background. However, new MRI reconstruction methoasdify the noise distribution in the
images, and the standard computation method oSN is not reliable. In this study, SNR was
computed with a more appropriate method using doabtuisition'”: 2 The signal was estimated
by computing the mean image of the double acqaisifThe noise was estimated by computing the
difference image of the double acquisition. ROlgaevglaced inside the resulting images and the
SNR was computed with the following formula:

- 1)

where is the signal measured on the average image ofldbble acquisition! is the standard

deviation measured on the difference image,is the correction factor taking into account the

double acquisition.

Contrast-to-Noise Ratio
CNR aims to quantify the contrast between two gitiesues. As for SNR, a double acquisition was

performed for CNR computation. This metric was categ, inside two ROIs ( placed



in two distinct tissues, with the following formula

(2)

where Is the mean image of the double acquisition and the difference image.

Percentage Image Uniformity

PIU was used to evaluate this image uniformityPlU was computed with the following formula:
! " !

i - ! # )

where o ( ) is the region with the highest signal (the regiaith the lowest signal)
inside the image. In our study, a 3D extensiorhif metric was implemented by using the Insight-
Toolkit library 2° (ITK).

Mean Opinion Score
MOS is a measure used in psychometry, which aimguantify the opinion of a group of

individuals. This metric consists of averaging siseres (appreciations) given by several experts.

Comparison of the DIAG and RT coil systems

To compare the image quality achieved by the DIAG BT systems, SNR (Eqg. 1) and PIU (Eqg. 3)
were estimated on 3D:Hweighted images of phantoms and volunteers (TE: 4." #3% ms

& """+ "(,)$-./01 , FOV: 380 x 380 x 414 mi Moreover, PIU was used to
compare PURE and N4 non-uniformity correction algorithms.

Signal-to-Noise ratio study

For the manufacturer phantom images, five circR&is were placed in the central slice. For the
volunteer images, five circular ROIs were placedha organs-at-risk (brainstem, up to corpus
callosum white matter, cerebellum, tongue and sealenuscle). SNR measurements were
performed inside the ROIs and averaged for eadhsgstem. The SNR ratios between the DIAG
and RT coil systems were computed to compare irqagéty.

The SNR (Eqg. 1) is impacted by different noise sesrin the MR scanning process. These sources



are mainly the receiving coil resistance and lossgginating from human body tissues. These
losses are proportional to the conductivity ofuss®?. To simulate the noise source, independently
from the coil resistance, a home-made uniform pdrannhimicking the head-and-neck anatomy and
containing a saline solution was imaged. Threecaitentrations were used (0, 3.2g/L and 5 g/L).
For the unsalted solution, the noise originatingnfrthe coil is evaluated, at 3.2 g/L an average
conductivity of human body tissues is considefedand 5g/L corresponds to a maximum barely

present in human body tissues.

Percentage Image Uniformity study

Manual delineations of the manufacturer phantomewssrformed, separating the VOI from the
background. Then, PIU (Eg. 3) was computed indideMOIl before and after application of the
PURE (phased-array uniformity enhancemefit) and N4 image non-uniformity correction
algorithms?® 24 PURE is a tool developed by an MRI manufactusaduin clinical imaging and
N4 is an algorithm originated from computer visiosed in research. The efficiency of both non-

uniformity correction algorithms is compared.

Optimization of the T1and T2 sequences for the RT coil system

To obtain reliable 3D T and & MR images for head-and-neck radiotherapy plannisag,
experimental design was performed. Threeaiid four & parameter sets were defined, and SNR
(Eg. 1), CNR (Eg. 2) and MOS were used as criteriselect the optimal parameter set. During the

experiment, clinical constraints were also congddpatient and RT equipment set-up time).

Signal-to-Noise ratio study
Circular ROIs were placed in the organs-at-riskaifistem, up to corpus callosum white matter,
cerebellum, tongue and scalene muscle) of the edus. SNR (Eq. 1) were computed inside the

ROls, and averaged for all &nd T images. The SNR was used to select the optimahpeter set.

Contrast-to-Noise ratio study
Circular ROIs were placed in the scalene musclethadrainstem of the volunteers. CNR (Eg. 2)
were computed inside the ROIs, and averaged fdr #a@and & images. The CNR was used to

select the optimal parameter set.

Mean Opinion Score study



The MOS was obtained from eight radiotherapists farel physicists. They ranked the volunteer
images for eachiland T, parameter sets.

Pseudo-CT generation

To evaluate performances of our optimized protopegudo-CTs were generated from the patient
MRIs. Each pseudo-CT was obtained by using a GAt werceptual los$> ¢ This DLM was
composed of two networks: a generator (G) and arichéhator (D), which were trained in
competition. Training and validation of this methegs performed by using a leave-one-out

scheme.

Generator network

The generator network aimed to provide pseudo-@is MRIs. In this study, the generator was a
U-Net 3, Its architecture was composed of two networksedakncoding and decoding. The

encoding aimed to extract multi-scale features ftbeninput MRI. This network was composed of
12 convolutional layers, followed by batch normatian and ReLu activation functiofs

The decoding part aimed to gradually reconstruet pseudo-CT using the features computed
during the encoding. This network was a mirror wer®f the encoding network.

Design of the encoding and decoding networks wetailed in supplementary materials 1.

To train the generator, a perceptual loss functigas implementeé’. This loss mimics the human
visual system to compare CT and pseudo-CT usinglasiffeatures as opposed to only the
intensities!? 26 The VGG16 network’” was pretrained from the ImageNet data?§eaind used to
compute the features inside the CT and pseudo-64.perceptual losd §) function was defined

as:

$o ¢ 0) 0 ) (4)

where is the MRI, is the corresponding CJ, is the pseudo-CT provided by the generator,

** s the L2 norm, an¢)) is the output of the'7VGG16 convolutional layer.

Discriminator network



The discriminator network® aimed to classify the generated pseudo-CT asorefalke CT. Thus,
the output of this network is a probability valuenging between 0 (fake) and 1 (real). The
discriminator architecture was composed of six cfumonal layers and one fully connected layer.
Each convolutional layer was followed by batch nalimation and Leaky-RelLu activation
functions. The fully connected layer was followeg & sigmoid activation function. The loss
function of the discriminatoiLp) was a L2 loss.

Design of the discriminator networks was detailedupplementary materials 1.

The generatorl(s) and discriminatorl(p) losses were combined to form the following adseed
loss:$ .+ . & | $ & | $y & &where isthe MRI, is the corresponding CT,
$o & is the discriminator loss, & is the generator loss, and and/ are the weights for
the discriminator and generator losses (Eq. 4).

Hyper-parameter setting of the GARN ®was detailed in supplementary materials 1.
Pseudo-CT evaluation
To evaluate the accuracy of the DLW !¢ a voxel-wise comparison of the HU from CT and

pseudo-CT was performed. For this aim, the meaolafeserror (MAE) and the mean error (ME)

were calculated for the whole body. These endpaowete defined as:

[{a}

123 =5 6 53¢ 6 .- (5)

4
and

13 -5 6 5¢ 6 .o

[{a}

(6)

Results

Comparison of the DIAG and RT setups

Table 2 gives the SNR value and ratio between taeufacturer phantom and volunteer images.
The SNR was always higher for the DIAG coil systiwan for the RT coil system. The SNR ratios
of both coil systems were 1.3 for phantom and viglers. As the SNR increases with the square
root of the acquisition time, it will require ancmase of 70% of the acquisition time



( <=>?@ABC 1.69) to reach the diagnostic image quality with RT coil system. Table 3 shows
the SNR values obtained on the home-made phantted With different concentrations of NaCl.
The SNR ratios were 1.6, 1.3 and 1.1 with respelsti0, 3.2 and 5 g/L of NaCl. For this phantom,
the SNR was also higher for the DIAG coil systermpared to that of the RT coil system. Figure 2
illustrates the image non-uniformity provided byttbagoil systems before and after PURE and N4
corrections. The PIU on raw 3Di-Weighted images is higher for the DIAG coil systeampared

to that of the RT coil system (38.8 % against 3% The N4 algorithm provided higher values
compared to the PURE (DIAG: 86.7 % against 41.7%,M.6 % against 49.0 %).

Optimization of the T1 and T2 sequences for the RT setup

Fig 3 illustrates the axial reconstructegeighted MR images (parameter sets v1, v2, v3)thad
native T-weighted MR image (parameter set v4), for one naear.Table 4 gives the SNR values
from the volunteer images acquired with the digtihcand T parameter sets. Higher SNR values
were obtained for the v3:Tand v1 B-weighted images. Table 4 gives also the CNR vaioethe
volunteer images. CNR values were higher for th&vand v4 B-weighted images compared to
other parameter sets. The lowest values were foamttie v2 B-weighted images. Additional Table
1 shows the MOS values given by 8 radiotherapists mphysicists. The maximum MOS values
were found for the v3 Tand v4 B-weighted images. These values correspond to theeaigtion
“good”. The scores range from 2.64 to 4.0. Figldstrates the MR images obtained with the v3 T
and v4 b sequence parameters, for one volunteer weariregad and shoulder mask within the RT
setup. These sequence parameter sets were retairtbd clinical protocol. The patient set-up time
with radiotherapy device was around 15 minutes (mmed to 5 minutes for diagnostic set-up). The

acquisition times were 3.21 and 6.22 minutes aaduh protocol time was 15 minutes.
Pseudo-CT evaluation

Fig 5. illustrates for one patient the MRI, thalr€T and the pseudo-CT generated by the GAN
using the perceptual loss. The MAE and ME (Eq. & &q. 6) obtained by using the GAN DLM on

our optimized patient MRI were 82.8 (+ 48.6) HU a8® (+ 12.8) HU. The computation time to

generate one pseudo-CT was approximately 35 seconds

Discussion



In a context of head-and-neck MRI-only radiotherapg quantify the loss of image quality caused
by using a RT setup for acquisition in treatmensgifpan. The 30% image quality decrease found
would require a 70% increase in acquisition timeb&fully compensated (as in diagnostic). To
compensate this decrease, an experimental designpnaposed to optimize a clinical MRI

protocol. The obtained MR images are suitable figedplanning (acquisition in treatment position

and dose calculation).

To compare the performances of the DIAG and RT sgdtems, 3D isotropiciTimages were
acquired on phantoms and healthy volunteers, coyeti the head-and-neck anatomy.

SNR ratios of 1.3 between the DIAG and RT coil syt were found for the manufacturer phantom
and volunteers. In another study, Liney et ‘alreported ratios equal to 1.09, 1.55 and 1.9
(respectively in axial, coronal and sagittal plgnestween the DIAG and RT coil systems. These
values are close to our SNR ratio. However, they lardly comparable because the authors
performed the imaging in 2D with a different RTget Moreover, the coverage of these RT coil
(head only) was too small to image correctly thedoneck region, limiting its use to some tumor
sites.

The comparison between different saline solutidtmsved the importance of the conductivity losses
for head-and-neck imaging at 1.5 T. As expected, WAG coil system is by design far more
optimized for head-and-neck imaging than the flexiRT coil system. This is demonstrated by the
1.6 ratio of SNR between the two systems for the puater phantom. When the salt concentration
increases, losses in the phantom increase, redtiengnpact of the coil design. In our case, the
SNR of the two coil systems are equivalent for g/l5salt concentration. At 3.2 g/L, the observed
ratio of 1.3 is similar to the ratio observed owieer, supporting the use of this salt conceioinat

in phantoms mimicking the human body

The DIAG coil system is less affected by image oaifermity compared to the RT coil system.
This system is designed with coil elements surrmmadll the patient head, thus providing a very
uniform signal. The flexible RT coil system is dgsd to accommodate different patient
anatomies, this explains its non-uniformity. 3D Rldlues computed on the 3D image were
38.8% and 33.5 % for the DIAG and RT systems. lotlaer study, Wong et at.reported 2D PIU
values equal to 92.7% and 93.4% for the DIAG ands&Tips. These values are hardly comparable
with our PIU results because they were only conguteng one axial slice of 2D head images. The
N4 non-uniformity correction algorithm provided test results compared to the manufacturer
method PURE. Nevertheless, the N4 method has afldtuning parameters requiring strong
knowledge in computer vision making it unappealiiog clinical routine. The PURE method
doesn’t need tuning parameters. Indeed, the PURIBatieappears more appropriate for clinical



routine while the N4 method can be used for psebifi@eneratiori®.

A design experiment was performed on the 3Dafid T volunteer images, to select the best
sequence parameters for delineation and MRI dosellation (pseudo-CT generation) during the
RT planning.

On the T-weighted MR images, the whole quantitative andeslve criteria provided the same
results. The v3 T parameter set gave the best results with mean 3$Nfan CNR and MOS
respectively equal respectively to 20.6, 6.16 af®d .3Conversely, for the,dweighted images these
criteria do not converge to the same result. Asuiscontrast is more important than noise for
delineation tasks during the RT planning, CNR an@3were mostly considered to select the
optimal T, parameter set. The v4 parameter set provided the best results with n@&dR and
MOS equal to 44.46 and 4.0.

During our experiment, clinical constraints as g@attiand RT equipment set-up time, and patient
discomfort (caused by the head and shoulder maskk also considered. The patient RT set-up
time was around 15 minutes compared to 5 minuteth®DIAG set-up time. The acquisition time
of the whole protocol was 15 minutes which is shiothan a standard radiotherapy treatment

session (~ 30 min).

Pseudo-CT generation was investigated in a limiachber of studies for head-and-neck site.
Guerreiro et al®! used an ABM to generate pseudo-CTs in the heachaokl area and reported a
MAE = 90.7 HU. Johanssoft performed a Gaussian mixture and obtained a MABZHU. Our
GAN method with perceptual 1083 ®compared favorably with these studies. Our optichikiRI
allow us to obtained accurate pseudo-CTs.

Our study presents some limitations. Firstly, MRdometrical distortions were not evaluated.
However, for head-and-neck site geometrical distost are generally low and inferior to 2 mm,
which is acceptable for RT planning 3 3% Secondly, the efficient and low-SAR (Specific-
Absorption-Rate) 3D gradient echa-Weighted sequence used in this study could beildens
dental artifacts. A fast spin echo alternative wdded as an option to address this issue. Thiraly,
do not quantify the impact of using an RT-setuptomor and organs-at-risk delineations. This
guantification could be very challenging to perfobecause of bias from IRM-DIAG IRM-RT
deformable registrations required to compare tliedmeations. Moreover, only three volunteers
were scanned for practical reasons (fabricatiopersonalized head and shoulder mask, double
acquisitions performed five times for each phantand healthy volunteer, availability of the
clinical MRI scanner). Finally, a dosimetric evdioa of the obtained pseudo-CTs was not



performed, it is part of future works.

Conclusion

This study aims to improve patient positioning adabe targeting in head-and-neck MRI-only
radiotherapy by using MRI acquired in treatmentitoms (with RT-setup). To compensate loss of
MR image quality generated by RT-setup, a desigreement was proposed to optimize a head-
and-neck MRI protocol. The obtained optimized MRages allow accurate and fast pseudo-CT
generation by a generative adversarial network gugiarceptual loss. These images could be

therefore used for dose planning in clinical piaeti
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V1T: V2 T: V3T V1T2 V2 T2 V3 T2 V4 T2
FOV (mm) 380 380 380 380 380 380 410
Matrix (px) 260x260| 260x260| 260x260| 192x190| 192x190| 192x190| 256x256
Voxel size (mnd) 1.5° 1.5° 1.5° 2.0° 2.0° 2.0° 1.6°
Number of slices 176 176 124 224 224 224 242
TE (ms) 4.2 1.12 4.2 74.6 131.9 95.5 100.3
TR (ms) 7.0 3.5 7.0 2000 2000 2000 3000
Flip angle (°) 15 10 15 90 90 90 90
Bandwidth (Hz/px) 195.3 325.5 195.3 325.5 244.1 2441 122.1
Acceleration
2 2 1 2 2 1 15
factor
Acquisition time
_ 2:22 1:11 3:21 3:17 2:13 3:39 6:31
(min:s)
Acquisition . _ ' . _ ' _
. . Sagittal | Sagittal| Sagittal Sagittal Sagitial Sadjitt Axial
orientation

Table 1. 3D T and B-weighted sequence parameters. Threand four B-weighted sequence
parameters were tested for the comparison of theysiems and the design optimization. Each

acquisition was performed twice and repeated fives.

Table 1. Paramétres des séquences 3D pondérée®em.TTrois parameétres de séquences

pondérées enilet quatre parameétres de séquences pondéréeanéié testées pour la

comparaison des systemes d’acquisition et la egadis du plan d’expérience. Chaque séquence a

été acquise deux fois avec cing répétitions.



Manufacturer phantom Volunteer
Coil systems| DIAG RT DIAG RT
173.8 133.8 21.2 | 16.3
SNR
(x 10.0) (x12.3) | (£5.2)| (3.3
Ratio 1.3 1.3

Table 2. SNR from 3D jFweighted MR images of the manufacturer phantomthad/olunteers.
The ratios between the SNR of the both coil systerr® computed to quantify their differences in

term of image quality. Each acquisition was perfedniwice and repeated five times.

Table 2. SNR provenant d'images IRM 3D pondéréeb; atiun fantbme et de volontaires. Le ratio
entre les SNR des deux systémes d’acquisition eaété@lé pour quantifier leurs différences en

termes de qualité d'images. Chaque séquence adiésa deux fois avec cing répétitions.



NaCL (g/L) | DIAG SNR | RT SNR | Ratio
143.6 91.9
0 1.6
(£43) | (£2.7)
90.9 72.2
3.2 1.3
(£1.6) | (+3.6)
79.7 71.7
5 1.1
(£3.3) | (£2.8)

fois.

Table 3. Influence of the conductivity on the SNRasurements from DIAG and RT colil systems.
SNR from 3D T-weighted MR images of a home-made phantom fill@ti different

concentrations of NaCl. Each acquisition was pemnéat twice.

Table 3. Influence de la conductivité sur les SN&/pnant des systemes d’acquisition de
diagnostic et de radiothérapie. Ces SNR proviendémtages IRM 3D pondérées en de

fantdmes remplis avec différentes concentrationsalel. Chaque acquisition a été réalisée deux




Ti-weighted SNR B-weighted SNR Ti-weighted CNR T2-weighted CNR

V1 V2 V3 V1 V2 V3 V4 V1 V2 V3 V1 V2 V3 V4

16.3 | 10.2 | 205 51.9 23.9 28.1 29.3 4.1 2.0 5.3 199 | 141 | 16.5 50.6
Volunteer 1 (£33)[(£33)|(x29)] (x6.8)|(x8.6)| (+10.8)| (+x5.3)| (29| (x1.3)|(x4.2)| (=£58)|(x4.2)| (3.5 ] (x10.8)

18.7 9.8 20.4 46.3 29.7 49.5 25.0 5.1 2.2 6.0 159 | 12.1 | 14.7 45.9
volunteer 2 *2.7)(£1.6)| (55| (x10.2)| (x4.2)| (x94) | (£35|(x3.0)| (*x11D)|(x31)| 37| (x24)]| (39| (x8.5)

18.0 | 10.6 | 20.9 47.9 25.0 39.3 22.6 6.1 2.6 7.2 20.2 | 174 | 182 36.3
Volunteer 3 (£28)| (x2.0)| (x2.7)| (x10.6)| (x54)| (x141)| (75| (x24)| (x1.2)| (*x3.4)] (x2.8)|(x4.0)] (x6.0)| (£ 10.8)

Table 4. SNR and CNR from 3D &nd k-weighted MR images of the three volunteers (withdguipment for RT acquisitions). Three T1 and four
To-weighted sequence parameters were tested foothparison of the coil systems and the design opétian. Each acquisition was performed

twice and repeated five time

Table 4. SNR et CNR provenant d'images IRM 3D poéég en Tet T, de trois volontaires. Trois parameétres de séquepoedérées en Bt quatre
parametres de séquences pondérées enteté testées pour la comparaison des systéaEpidsition et la réalisation du plan d’expérienCaaque

séquence a été acquise deux fois avec cing répétiti



VIT:i | V2T1 | V3T1| VIT2 | V2T2 | V3T2 | V4 T2
3.45 | 2.64 | 391 | 3.25 | 3.08 | 3.08 | 4.0
(£ 0.6)| (£0.7)| (0.8)| (£ 0.6)| (+ 0.8)| (x0.7)| ( 0.6)

MOS

Additional Table 1. The Mean Opinion Score (MOS)egi by 8 radiotherapists and 5 physicists.
The score label is defined by bad = 1, poor =2 8, good = 4, excellent = 5.

Additional Table 1. La note d’opinion moyenne (MGf®nnée par huit radiothérapeutes et cing
physiciens. Le label associé a chaque note e miauvais = 1, mauvais = 2, acceptable = 3, bien

=4, excellent = 5.



Fig 1. DIAG (a) and RT (b) coil systems, manufaetyhantom (c), and one volunteer wearing a
five points head and shoulder mask (d)

Fig 1. Systemes d’acquisitions de diagnostic (@eeadiothérapie (b), fantdme (c), et un

volontaire portant un masque thermoplastique a poigts (d)



Raw image

DIAG Setup |

. D- Iw
0.000

(Normalized intensity)

Fig 2. lllustration of the image uniformity on tB® T:-weighted MR images from the

manufacturer phantom (before and after PURE anddge uniformity correction algorithms)

Fig 2. lllustration de I'uniformité d'images IRM 3pondérées en;Td’'un fantdme (avant et aprés

application des algorithmes PURE et N4)



(d)

Fig 3. lllustration of the axial reconstructiontbe 3D B-weighted MR images v1 (a), v2 (b), v3

(c), and the native 3D-iweighted MR image v4 (d), for one volunteer

Fig 3. lllustration de coupes axiales d'images IBMpondérées erp,Teconstruites vl (a), v2 (b),
v3 (c), et d'une coupe axiale d’'une image IRM 3Mgérée en Tnative v4 (d), pour un volontaire



(b)

Fig 4. lllustration of the optimized 3D, Bnd b-weighted MR images for one volunteer (in the 3
view): v3 T1 (a) and v4 7 (b)

Fig 4. lllustration d'images IRM 3D optimisées p@néles en Tet T> pour un volontaire (dans les
trois directions): v3T(a) et v4 B (b)



Pseudo-CT

Fig 5. lllustration for one patient of the-weighted MRI, real CT and pseudo-CT generatechby t
GAN using a perceptual loss

Fig 5. lllustration pour un patient d’une image IRMndérée enzJ d’'une image scanner (CT-
scan), et un pseudo-CT généré par une méethoderdidgsage profond appelée GAN

utilisant une fonction de cout perceptuelle



Supplementary materials 1: Pseudo-CT generation by GAN with perceptual

loss

Each pseudo-CT were obtained by using a GAN! on the patient MRIs. This DLM was
composed of two networks: a generator (G) and aridimator (D), which were trained in

competition.

Generator network

The generator network aimed to provide pseudo-@is MRIs. In this study, the generator was a
U-Net 3 Its architecture was composed of two networksedakncoding and decoding. The
encoding aimed to extract multi-scale features ftbeninput MRI. This network was composed of
12 convolutional layers, followed by batch normaftian and RelLu activation functio8 The
filter numbers of these layers were 64, 64, 128, P&6, 256, 256, 512, 512, 512, 512, and 512,
and their filter size was 3 x 3 (stride = 1). Fomah-sampling, convolutional layers with a filtezai

of 2 x 2 (stride = 2) were used.

The decoding part aimed to gradually reconstruet pseudo-CT using the features computed
during the encoding. This network was a mirror \@rf the encoding network. For feature up-
sampling, transposed 2D convolutional layers weseduwith a filter size of 2 x 2 (stride = 2). To
obtain the pseudo-CT, the last layer of the degpdetwork was a convolution layer with one filter
(size = 1x1).

To train the generator a perceptual loss functisas implemented®. This loss mimics the human
visual system to compare CT and pseudo-CT usinglasiffeatures as opposed to only the
intensities'> 26 The VGG16 network’ was pretrained from the ImageNet data set, and tese
compute the features inside the CT and pseudo-8&.pErceptual loss functio,f) was defined

as:

$o ¢ 0) 0 ) (4)

where is the MRI, is the corresponding CJ, is the pseudo-CT provided by the generator,

** s the L2 norm, an¢)) is the output of the'7VGG16 convolutional layer.



Discriminator network

The discriminator network aimed to classify the grated pseudo-CT as real or fake CT. Thus, the
output of this network is a probability value ramgibetween 0 (fake) and 1 (real). The
discriminator architecture was composed of six otuonal layers and one fully connected layer.
Each convolutional layer was followed by batch naliration and Leaky-RelLu activation
functions. The filter numbers of these layers w&ré&6, 32, 64, 64 and 64. The filter size was 3 x 3
(stride = 2) for the first four layers and 1 x ZXrige = 1) for the remaining layers. The fully
connected layer was followed by a sigmoid activatiunction. The loss function of the

discriminator$, was a L2 loss.

The generator and discriminator losses were comdbitneform the following adversarial loss:
$.. . & /I $% & | $, & &where is the MRI, s the corresponding CT,
$ & is the discriminator loss, & is the generator loss, ahd and/ are the weights for

the discriminator and generator losses.

Training of the GAN with perceptual loss

The GAN DLM was trained using anatomically pairexdtad axial 2D slices of the training CT and
MR images. Data augmentation was performed to aseréhe size of the training cohort. It was
conducted by randomly applying affine registrationsthe slices (translated by -5% to 5% per axis,
rotated by -10° to +10°, sheared by -10° to 10°miAi-batch size of 10 slices and 200 epochs was
considered. The network parameters were optimiaiuguthe Adam algorithr®. The parameters
of this algorithm parameters werB: E F ©H | FJK, andl FJKJThe weights of the
discriminator and generator loss functions wefe: FF and / , respectively. The
computation time of the GAN DLM training was appiroatively 30 hours with a Nvidia GTX
1070 TI 8 Go. The computation time to generatepsedo-CT from a new MRI (not belong to the

training cohort) was approximately 35 seconds.





