, Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the Energy Performance of Buildings (recast). Union, Official J. Eur. Union, vol.153, pp.13-35, 2010.

M. G. Debije and P. P. Verbunt, Thirty Years of Luminescent Solar Concentrator Research: Solar Energy for the Built Environment, Adv. Energy Mater, vol.2012, issue.1, pp.207-210, 2013.

F. Meinardi, F. Bruni, and S. Brovelli, Luminescent Solar Concentrators for Building-Integrated Photovoltaics, Nat. Rev. Mater, 2017.

M. Rafiee, S. Chandra, H. Ahmed, and S. J. Mccormack, An Overview of Various Configurations of Luminescent Solar Concentrators for Photovoltaic Applications, Optical Materials, vol.91, pp.212-227, 2019.

A. Goetzberger and W. Greube, Solar Energy Conversion with Fluorescent Collectors

Y. Zhao and R. R. Lunt, Transparent Luminescent Solar Concentrators for Large-Area Solar Windows Enabled by Massive Stokes-Shift Nanocluster Phosphors, Adv. Energy Mater, vol.2013, issue.9, pp.1143-1148

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon et al., Large-Area Luminescent Solar Concentrators Based on 'Stokes-Shift-Engineered' Nanocrystals in a Mass-Polymerized PMMA Matrix, Nat. Photonics, vol.8, issue.5, pp.392-399, 2014.

F. Meinardi, H. Mcdaniel, F. Carulli, A. Colombo, K. A. Velizhanin et al., Highly Efficient Large-Area Colourless Luminescent Solar Concentrators Using Heavy-Metal-Free Colloidal Quantum Dots, Nat. Nanotechnol, vol.10, pp.878-885, 2015.

F. Meinardi, S. Ehrenberg, L. Dhamo, F. Carulli, M. Mauri et al.,

U. Kortshagen and S. Brovelli, Highly Efficient Luminescent Solar Concentrators Based on Earth-Abundant Indirect-Bandgap Silicon Quantum Dots, Nat. Photonics, p.177, 2017.

C. Yang and R. R. Lunt, Limits of Visibly Transparent Luminescent Solar Concentrators

. Adv, Opt. Mater, vol.2017, issue.8, p.1600851

R. Baetens, B. P. Jelle, and A. Gustavsen, Properties, Requirements and Possibilities of Smart Windows for Dynamic Daylight and Solar Energy Control in Buildings: A State-of-the-Art Review, Sol. Energy Mater. Sol. Cells, vol.94, issue.2, pp.87-105, 2010.

C. Bechinger, S. Ferrere, A. Zaban, J. Sprague, and B. A. Gregg, Photoelectrochromic 15. Lampert, C. M

, Energy Mater. Sol. Cells, vol.52, issue.3-4, pp.207-221, 1998.

V. K. Thakur, G. Ding, J. Ma, P. S. Lee, and X. Lu, Hybrid Materials and Polymer Electrolytes for Electrochromic Device Applications, Adv. Mater, vol.2012, issue.30, pp.4071-4096

F. Mateen, H. Oh, W. Jung, S. Y. Lee, H. Kikuchi et al., Polymer Dispersed Liquid Crystal Device with Integrated Luminescent Solar Concentrator, Liq. Cryst, vol.45, issue.4, pp.498-506, 2018.

F. Mateen, M. Ali, H. Oh, and S. Hong, Nitrogen-Doped Carbon Quantum Dot Based Luminescent Solar Concentrator Coupled with Polymer Dispersed Liquid Crystal Device for Smart Management of Solar Spectrum, Solar Energy, vol.178, pp.48-55, 2019.

J. Murray, D. Ma, and J. N. Munday, Electrically Controllable Light Trapping for Self-Powered Switchable Solar Windows, ACS Photonics, vol.2017, issue.1, pp.1-7

R. Chen, J. L. Chau, and G. Hwang, Design and Fabrication of Diffusive Solar Cell Window, Renewable Energy, vol.40, issue.1, pp.24-28, 2012.

C. J. Traverse, R. Pandey, M. C. Barr, and R. R. Lunt, Emergence of Highly Transparent Photovoltaics for Distributed Applications, Nat. Energy, vol.2017, issue.11, pp.849-860

F. A. Cotton, Metal Atom Clusters in Oxide Systems, Inorg. Chem, vol.1964, issue.9, pp.1217-1220

M. Amela-cortes, Y. Molard, S. Paofai, A. Desert, J. Duvail et al.,

S. Cordier, Versatility of the Ionic Assembling Method to Design Highly Luminescent PMMA Photoactive Materials, Eur. J. Inorg. Chem, issue.19, pp.3107-3111, 2012.

Y. Zhou, H. Zhao, D. Ma, and F. Rosei, Harnessing the Properties of Colloidal Quantum Dots in Luminescent Solar Concentrators, Chem. Soc. Rev, vol.47, issue.15, pp.5866-5890, 2018.

S. Cordier, F. Grasset, Y. Molard, M. Amela-cortes, R. Boukherroub et al.,

M. Mortier, N. Ohashi, N. Saito, and H. Haneda, Inorganic Molybdenum Octahedral Nanosized Cluster Units, Versatile Functional Building Block for Nanoarchitectonics, J. Inorg. Organomet. Polym. Mater, vol.25, issue.2, pp.189-204, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01082719

J. W. Doane, N. A. Vaz, B. G. Wu, and S. ?umer, Field Controlled Light Scattering from Nematic Microdroplets, Appl. Phys. Lett, vol.48, issue.4, pp.269-271, 1986.

Y. Molard, A. Ledneva, M. Amela-cortes, V. Circu, N. G. Naumov et al., Ionically Self-Assembled Clustomesogen with Switchable
URL : https://hal.archives-ouvertes.fr/hal-00694104

, Magnetic/Luminescence Properties Containing

. Mater, , vol.23, pp.5122-5130, 2011.

M. Amela-cortes, A. Garreau, S. Cordier, E. Faulques, J. Duvail et al., Tuned Red NIR Phosphorescence of Polyurethane Hybrid Composites Embedding Metallic Nanoclusters for Oxygen Sensing, Chem. Commun, vol.30, pp.8177-8180, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01146240

M. Prevot, M. Amela-cortes, S. K. Manna, S. Cordier, T. Roisnel et al., Electroswitchable Red-NIR Luminescence of Ionic Clustomesogen Containing Nematic Liquid Crystalline Device, J. Mater. Chem. C, vol.2015, issue.20, pp.5152-5161

M. Prevot, M. Amela-cortes, S. K. Manna, R. Lefort, S. Cordier et al., Design and Integration in Electro-Optic Devices of Highly Efficient and Robust Red-NIR Phosphorescent Nematic Hybrid Liquid Crystals Containing, Adv. Funct. Mater, vol.25, issue.31, pp.4966-4975, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01180052

S. M. Wood, M. Prévôt, M. Amela-cortes, S. Cordier, S. J. Elston et al.,

S. M. , Polarized Phosphorescence of Isotropic and Metal-Based Clustomesogens Dispersed into

, Chiral Nematic Liquid Crystalline Films, Adv. Optical Mater, vol.3, issue.10, pp.1368-1372, 2015.

Y. Molard, F. Dorson, V. Circu, T. Roisnel, F. Artzner et al., Clustomesogens: Liquid Crystal Materials Containing Transition Metal Clusters, Angew. Chem. Int. Ed. Engl, issue.19, pp.3351-3355, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00657878

Y. Molard, Clustomesogens: Liquid Crystalline Hybrid Nanomaterials Containing Functional Metal Nanoclusters, Acc. Chem. Res, vol.49, issue.8, pp.1514-1523, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01364220

P. S. Drzaic, Liquid Crystal Dispersions. World Scientific, vol.1, p.448, 1995.

R. R. Deshmukh, Electro-optic and Dielectric Responses in PDLC Composite Systems, Liquid Crystalline Polymers, Processing and Applications, 2015.

J. A. Jackson, C. Turro, M. D. Newsham, and D. G. Nocera, Oxygen Quenching of Electronically Excited Hexanuclear Molybdenum and Tungsten Halide Clusters, J. Phys. Chem, vol.94, issue.11, pp.4500-4507, 1990.

M. Robin, N. Dumait, M. Amela-cortes, C. Roiland, M. Harnois et al., Direct Integration of Red-NIR Emissive Ceramic-like AnM6Xi8Xa6 Metal Cluster Salts in Organic Copolymers Using Supramolecular Interactions, Chem. Eur. J, vol.24, issue.19, pp.4825-4829, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01716211

D. Yang and S. Wu, Fundamentals of liquid crystal devices, 2006.

G. P. Montgomery, J. L. West, W. Tamura-lis, M. Born, and E. Wolf, Degradation of Liquid Crystal Device Performance Due to Selective Adsorption of Ions, Interference and Diffraction of Light, vol.69, pp.1182-1184, 1991.

J. A. Ferrari, E. A. Dalchiele, E. M. Frins, J. A. Gentilini, C. D. Perciante et al., Size Control of Phase-Separated Liquid Crystal Droplets in a Polymer Matrix Based on The Phase Diagram, J. Polym. Sci., Part B: Polym. Phys, vol.2012, issue.12, pp.863-869, 2008.

J. R. Kelly and W. Wu, Multiple Scattering Effects in Polymer Dispersed Liquid Crystals

, Liq. Cryst, vol.14, issue.6, pp.1683-94, 1993.

P. S. Drzaic and D. Density, Droplet Size, and Wavelength Effects in PDLC Light Scattering, Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A, vol.261, issue.1, pp.383-392, 1995.

P. Song, Y. Gao, F. Wang, L. Zhang, H. Xie et al., Studies on the Electro-Optical and The Light-Scattering Properties of PDLC Films with The Size Gradient of The LC Droplets, Liq. Cryst, vol.42, issue.3, pp.390-396, 2015.