N. J. Loman and M. Watson, Successful test launch for nanopore sequencing, Nature Methods, vol.12, pp.303-304, 2015.

A. S. Mikheyev and M. M. Tin, A first look at the Oxford Nanopore MinION sequencer, Molecular Ecology Resources, vol.14, pp.1097-1102, 2014.

H. M. Mcconnell, T. H. Watts, R. M. Weis, and A. A. Brian, Supported planar membranes in studies of cell-cell recognition in the immune system, Biochim. Biophys. Acta, vol.864, issue.86, p.90016, 1986.

E. T. Castellana and P. S. Cremer, Solid supported lipid bilayers: From biophysical studies to sensor design, Surface Science Reports, vol.61, pp.429-444, 2006.

L. K. Tamm and H. M. Mcconnell, Biophysical Journal, vol.47, pp.105-113, 1985.

U. Mennicke and T. Salditt, Preparation of Solid-Supported Lipid Bilayers by Spin-Coating, Langmuir, vol.18, pp.8172-8177, 2002.

S. Jung, M. A. Holden, P. S. Cremer, and C. P. Collier, Two-component membrane lithography via lipid backfilling, Chemphyschem, vol.6, pp.423-426, 2005.

A. O. Hohner, M. P. David, and J. O. Rädler, Controlled solvent-exchange deposition of phospholipid membranes onto solid surfaces, Biointerphases, vol.5, pp.1-8, 2010.

C. J. Brinker, Y. Lu, A. Sellinger, and H. Fan, Evaporation-Induced Self-Assembly: Nanostructures Made Easy, Advanced Materials, vol.11, pp.579-585, 1999.

S. Lenhert, C. A. Mirkin, and H. Fuchs, In situ lipid dip-pen nanolithography under water, Scanning, vol.32, pp.15-23, 2010.

H. Lang, C. Duschl, and H. Vogel, A new class of thiolipids for the attachment of lipid bilayers on gold surfaces, Langmuir, vol.10, pp.197-210, 1994.

G. J. Hardy, R. Nayak, and S. Zauscher, Model cell membranes: Techniques to form complex biomimetic supported lipid bilayers via vesicle fusion, Curr Opin Colloid Interface Sci, vol.18, pp.448-458, 2013.

H. Egawa and K. Furusawa, Liposome Adhesion on Mica Surface Studied by Atomic Force Microscopy, Langmuir, vol.15, pp.1660-1666, 1999.

R. Richter, A. Mukhopadhyay, and A. Brisson, Pathways of Lipid Vesicle Deposition on Solid Surfaces: A Combined QCM-D and AFM Study, vol.85, pp.3035-3047, 2003.

R. P. Richter, R. Bérat, and A. R. Brisson, Formation of Solid-Supported Lipid Bilayers: An Integrated View, Langmuir, vol.22, pp.3497-3505, 2006.

D. Stroumpoulis, A. Parra, and M. Tirrell, A kinetic study of vesicle fusion on silicon dioxide surfaces by ellipsometry, AIChE Journal, vol.52, pp.2931-2937, 2006.

G. J. Hardy, R. Nayak, S. M. Alam, J. G. Shapter, F. Heinrich et al., Biomimetic supported lipid bilayers with high cholesterol content formed by ?-helical peptideinduced vesicle fusion, J Mater Chem, vol.22, pp.19506-19513, 2012.

F. C. Tsui, D. M. Ojcius, and W. L. Hubbell, The intrinsic pKa values for phosphatidylserine and phosphatidylethanolamine in phosphatidylcholine host bilayers, Biophys. J, vol.49, issue.86, pp.83655-83659, 1986.

D. Jeong, H. Jang, S. Q. Choi, and M. C. Choi, Enhanced stability of freestanding lipid bilayer and its stability criteria, Scientific Reports, vol.6, 2016.

M. Snejdárková, M. Rehák, and M. Otto, Stability of bilayer lipid membranes on different metallic supports, Biosens Bioelectron, vol.12, issue.97, pp.87060-87061, 1997.

D. S. Dimitrov and R. K. Jain, Membrane stability, vol.779, pp.437-468, 1984.

J. P. Alcaraz, , 2016.

L. Galili, K. Herz, O. Dym, and E. Padan, Unraveling functional and structural interactions between transmembrane domains IV and XI of NhaA Na+/H+ antiporter of Escherichia coli, J. Biol. Chem, vol.279, pp.23104-23113, 2004.

L. Laurentius, S. R. Stoyanov, S. Gusarov, A. Kovalenko, R. Du et al., Diazonium-Derived Aryl Films on Gold Nanoparticles: Evidence for a Carbon-Gold Covalent Bond, ACS Nano, vol.5, pp.4219-4227, 2011.

D. Bélanger and J. Pinson, Electrografting: a powerful method for surface modification, Chemical Society Reviews, vol.40, p.3995, 2011.

F. Barrière and A. J. Downard, Covalent modification of graphitic carbon substrates by nonelectrochemical methods, Journal of Solid State Electrochemistry, vol.12, pp.1231-1244, 2008.

S. Lin, C. Lin, J. Jhang, and W. Hung, Electrodeposition of Long-Chain Alkylaryl Layers on Au Surfaces, The Journal of Physical Chemistry C, vol.116, pp.17048-17054, 2012.

D. Taglicht, E. Padan, and S. Schuldiner, Overproduction and purification of a functional Na+/H+ antiporter coded by nhaA (ant) from Escherichia coli, J. Biol. Chem, vol.266, pp.11289-11294, 1991.

D. Taglicht, E. Padan, and S. Schuldiner, Proton-sodium stoichiometry of NhaA, an electrogenic antiporter from Escherichia coli, J. Biol. Chem, vol.268, pp.5382-5387, 1993.

M. Venturi and E. Padan, Purification of NhaA Na+/H+ Antiporter of Escherichia coli for 3D or 2D Crystallization, Membrane Protein Purification and Crystallization, pp.179-190, 2003.

Y. Huang, W. Chen, D. L. Dotson, O. Beckstein, and J. Shen, Mechanism of pH-dependent activation of the sodium-proton antiporter NhaA, Nature Communications, vol.7, p.12940, 2016.

C. Batchelor-mcauley, B. R. Kozub, D. Menshykau, and R. G. Compton, Voltammetric Responses of Surface-Bound and Solution-Phase Anthraquinone Moieties in the Presence of Unbuffered Aqueous Media, J. Phys. Chem. C, vol.115, pp.714-718, 2011.

J. J. Hickman, D. Ofer, P. E. Laibinis, G. M. Whitesides, and M. S. Wrighton, Molecular Self-Assembly of Two-Terminal, Voltammetric Microsensors with Internal References, Science, vol.252, pp.688-691, 1991.

G. Wildgoose, Anthraquinone-derivatised carbon powder: reagentless voltammetric pH electrodes, Talanta, vol.60, pp.887-893, 2003.

H. Leventis, Derivatised carbon powder electrodes: reagentless pH sensors, Talanta, vol.63, pp.1039-1051, 2004.

I. Streeter, H. C. Leventis, G. G. Wildgoose, M. Pandurangappa, N. S. Lawrence et al., A sensitive reagentless pH probe with a ca. 120mV/pH unit response, Journal of Solid-State Electrochemistry, vol.8, 2004.

G. Olofsson and E. Sparr, Ionization Constants pKa of Cardiolipin, PLOS ONE, vol.8, p.73040, 2013.

D. Marsh, Thermodynamics of Phospholipid Self-Assembly, Biophysical Journal, vol.102, pp.1079-1087, 2012.

R. A. Böckmann, A. Hac, T. Heimburg, and H. Grubmüller, Effect of Sodium Chloride on a Lipid Bilayer, Biophysical Journal, vol.85, pp.74594-74603, 2003.

M. Inabayashi, S. Miyauchi, N. Kamo, and T. Jin, Conductance Change in Phospholipid Bilayer Membrane by an Electroneutral Ionophore, Monensin, Biochemistry, vol.34, pp.3455-3460, 1995.

S. Maher, H. Basit, R. J. Forster, and T. E. Keyes, Micron dimensioned cavity array supported lipid bilayers for the electrochemical investigation of ionophore activity, Bioelectrochemistry, vol.112, pp.16-23, 2016.

G. Stark, B. Ketterer, R. Benz, and P. Läuger, The Rate Constants of Valinomycin-Mediated Ion Transport through Thin Lipid Membranes, Biophysical Journal, vol.11, pp.981-994, 1971.

C. Steinem, A. Janshoff, K. Dem-bruch, K. Reihs, J. Goossens et al., Valinomycin-mediated transport of alkali cations through solid supported membranes, Bioelectrochemistry and Bioenergetics, vol.45, issue.98, pp.73-80, 1998.

E. Layne, Spectrophotometric and turbidimetric methods for measuring proteins, Methods in Enzymology, issue.57, pp.3413-3421, 1957.

S. Pautot, B. J. Frisken, and D. A. Weitz, Engineering asymmetric vesicles, Proceedings of the National Academy of Sciences, vol.100, pp.10718-10721, 2003.