A. T. Diplock, P. Aggett, M. Ashwell, F. R. Bornet, E. B. Fern et al., Scientific concepts of functional foods in europe: Consensus document, Br. J. Nutr, vol.81, pp.1-27, 1999.

W. H. Saris, N. G. Asp, I. Björck, E. Blaak, F. Bornet et al., Functional food science and substrate metabolism, Br. J. Nutr, vol.80, pp.47-75, 1998.

H. Rabah, F. L. Do-carmo, and G. Jan, Dairy propionibacteria: Versatile probiotics, vol.5, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01524323

R. Santaolalla and M. T. Abreu, Innate immunity in the small intestine, Curr. Opin. Gastroenterol, vol.28, pp.124-129, 2012.

J. K. Ko and K. K. Auyeung, Inflammatory bowel disease: Etiology, pathogenesis and current therapy, Curr. Pharm. Des, vol.20, pp.1082-1096, 2014.

S. M. Vindigni, T. L. Zisman, D. L. Suskind, and C. J. Damman, The intestinal microbiome, barrier function, and immune system in inflammatory bowel disease: A tripartite pathophysiological circuit with implications for new therapeutic directions, Therap. Adv. Gastroenterol, vol.9, pp.606-625, 2016.

Y. Zhang and Y. Li, Inflammatory bowel disease, Pathogenesis. World J. Gastroenterol, vol.20, pp.91-99, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02338902

Y. Derwa, D. J. Gracie, P. J. Hamlin, and A. C. Ford, Systematic review with meta-analysis: The efficacy of probiotics in inflammatory bowel disease, Aliment. Pharmacol. Ther, vol.46, pp.389-400, 2017.

Y. A. Ghouri, D. M. Richards, E. F. Rahimi, J. T. Krill, K. A. Jelinek et al., Systematic review of randomized controlled trials of probiotics, prebiotics, and synbiotics in inflammatory bowel disease, Clin. Exp. Gastroenterol, vol.7, p.473, 2014.

J. C. Sniffen, L. V. Mcfarland, C. T. Evans, and E. J. Goldstein, Choosing an appropriate probiotic product for your patient: An evidence-based practical guide, PLoS ONE, vol.13, 2018.

N. Colliou, Y. Ge, B. Sahay, M. Gong, M. Zadeh et al., Commensal Propionibacterium strain UF1 mitigates intestinal inflammation via Th17 cell regulation, J. Clin. Investig, vol.127, pp.3970-3986, 2017.

B. Foligné, J. Breton, D. Mater, and G. Jan, Tracking the microbiome functionality: Focus on Propionibacterium species, Gut, vol.62, pp.1227-1228, 2013.

A. Thierry, H. Falentin, S. M. Deutsch, G. Jan, . Propionibacterium et al., Encyclopedia of Dairy Sciences

J. W. Fuquay, P. F. Fox, and M. Sweeney, , pp.403-411, 2011.

B. Foligné, S. Deutsch, J. Breton, F. J. Cousin, J. Dewulf et al., Promising immunomodulatory effects of selected strains of dairy propionibacteria as evidenced in vitro and in vivo, Appl. Environ. Microbiol, vol.76, pp.8259-8264, 2010.

L. Marechal, C. Peton, V. Ple, C. Vroland, C. Jardin et al., Surface proteins of Propionibacterium freudenreichii are involved in its anti-inflammatory properties, J. Proteom, vol.113, pp.447-461, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01209735

S. Deutsch, M. Mariadassou, P. Nicolas, S. Parayre, R. Le-guellec et al., Identification of proteins involved in the anti-inflammatory properties of Propionibacterium freudenreichii by means of a multi-strain study
URL : https://hal.archives-ouvertes.fr/hal-01510019

H. Rabah, O. Ménard, F. Gaucher, F. L. Do-carmo, D. Dupont et al., Cheese matrix protects the immunomodulatory surface protein SlpB of Propionibacterium freudenreichii during in vitro digestion, Food Res. Int, vol.106, pp.712-721, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01707548

H. Rabah, S. Ferret-bernard, S. Huang, L. Le-normand, F. J. Cousin et al., The Cheese Matrix Modulates the Immunomodulatory Properties of Propionibacterium freudenreichii CIRM-BIA 129 in Healthy Piglets, Front. Microbiol, vol.9, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01910411

C. Plé, J. Breton, R. Richoux, M. Nurdin, S. Deutsch et al., Combining selected immunomodulatory Propionibacterium freudenreichii and Lactobacillus delbrueckii strains: Reverse engineering development of an anti-inflammatory cheese, Mol. Nutr. Food Res, vol.60, pp.935-948, 2016.

C. Plé, R. Richoux, J. Jardin, M. Nurdin, V. Briard-bion et al., Single-strain starter experimental cheese reveals anti-inflammatory effect of Propionibacterium freudenreichii CIRM BIA 129 in TNBS-colitis model, J. Funct. Foods, vol.18, pp.575-585, 2015.

Y. Ge, M. Gong, N. Colliou, M. Zadeh, J. Li et al., Neonatal intestinal immune regulation by the commensal bacterium, P. UF1, Mucosal Immunol, vol.12, 2019.

F. George, C. Daniel, M. Thomas, E. Singer, A. Guilbaud et al., Occurrence and Dynamism of Lactic Acid Bacteria in Distinct Ecological Niches: A Multifaceted Functional Health Perspective, Front. Microbiol, vol.9, p.2899, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02498291

S. Rocha, C. Gomes-santos, A. C. Garcias-moreira, T. De-azevedo, M. Diniz-luerce et al., Local and systemic immune mechanisms underlying the anti-colitis effects of the dairy bacterium Lactobacillus delbrueckii, PLoS ONE, vol.9, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01204288

S. Rocha, C. Lakhdari, O. Blottière, H. M. Blugeon, S. Sokol et al., Anti-inflammatory properties of dairy lactobacilli, Inflamm. Bowel. Dis, vol.18, pp.657-666, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00632487

M. Junjua, N. Kechaou, F. Chain, A. A. Awussi, Y. Roussel et al., A large scale in vitro screening of Streptococcus thermophilus strains revealed strains with a high anti-inflammatory potential, LWT-Food Sci. Technol, vol.70, pp.78-87, 2016.

J. D. De-man, M. Rogosa, and M. E. Sharpe, A medium for the cultivation of lactobacilli, J. Appl. Bacteriol, vol.23, pp.130-135, 1960.

B. E. Terzaghi and W. E. Sandine, Improved medium for lactic streptococci and their bacteriophages, Appl. Microbiol, vol.29, pp.807-813, 1975.

A. C. Malik, G. W. Reinbold, and E. R. Vedamuthu, An evaluation of the taxonomy of Propionibacterium, Can. J. Microbiol, vol.14, pp.1185-1191, 1968.

R. Richoux, L. Aubert, G. Roset, and J. R. Kerjean, Impact of the proteolysis due to lactobacilli on the stretchability of Swiss-type cheese, Dairy Sci. Technol, vol.89, pp.31-41, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00895691

N. Li, R. Richoux, N. Leconte, C. Bevilacqua, M. Maillard et al., Somatic cell recovery by microfiltration technologies: A novel strategy to study the actual impact of somatic cells on cheese matrix, Int. Dairy J, vol.65, pp.5-13, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01391138

R. De-freitas, V. Chuat, M. Madec, L. A. Nero, A. Thierry et al., Biodiversity of dairy Propionibacterium isolated from dairy farms in Minas Gerais, Brazil. Int. J. Food Microbiol, vol.203, pp.70-77, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01209794

M. Gautier, A. F. De-carvalho, and A. Rouault, DNA fingerprinting of dairy propionibacteria strains by pulsed-field gel electrophoresis, Curr. Microbiol, vol.32, pp.17-24, 1996.

G. Jan, A. Rouault, and J. L. Maubois, Acid stress susceptibility and acid adaptation of Propionibacterium freudenreichii subsp. shermanii, Lait, vol.80, pp.325-336, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00895409

F. Rossi, C. Amadoro, and G. Colavita, Members of the Lactobacillus Genus Complex (LGC) as Opportunistic Pathogens: A Review. Microorganisms, vol.7, p.126, 2019.

J. K. Jenkins, W. J. Harper, and P. D. Courtney, Genetic diversity in Swiss cheese starter cultures assessed by pulsed field gel electrophoresis and arbitrarily primed PCR, Lett. Appl. Microbiol, vol.35, pp.423-427, 2002.

K. H. Diehl, R. Hull, D. Morton, R. Pfister, Y. Rabemampianina et al., European Federation of Pharmaceutical Industries Association and European Centre for the Validation of Alternative Methods A good practice guide to the administration of substances and removal of blood, including routes and volumes, J. Appl. Toxicol, vol.21, pp.15-23, 2001.

H. S. Cooper, S. N. Murthy, R. S. Shah, and D. J. Sedergran, Clinicopathologic study of dextran sulfate sodium experimental murine colitis, Lab. Investig, vol.69, pp.238-249, 1993.

D. M. Mccafferty, E. Sihota, M. Muscara, J. L. Wallace, K. A. Sharkey et al., Spontaneously developing chronic colitis in IL-10/iNOS double-deficient mice, Am. J. Physiol. Gastrointest. Liver Physiol, vol.279, pp.90-99, 2000.

R. D. Carvalho, N. Breyner, Z. Menezes-garcia, N. M. Rodrigues, L. Lemos et al., Secretion of biologically active pancreatitis-associated protein I (PAP) by genetically modified dairy Lactococcus lactis NZ9000 in the prevention of intestinal mucositis, vol.16, p.27, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01607391

J. S. Oliveira, K. Costa, L. B. Acurcio, S. H. Sandes, G. D. Cassali et al., In vitro and in vivo evaluation of two potential probiotic lactobacilli isolated from cocoa fermentation (Theobroma cacao L.), J. Funct. Foods, vol.47, pp.184-191, 2018.

A. Thierry, D. Salvat-brunaud, M. N. Madec, F. Michel, and J. L. Maubois, Swiss cheese ripening: Dynamics of bacterial populations and evolution of the aqueous phase composition for three industrial cheeses, Lait, vol.78, pp.521-542, 1998.

T. Langsrud and G. W. Reinbold, Flavor development and microbiology of Swiss cheese. A. Review. II Starters, manufacturing process and procedures, J. Milk Food Technol, vol.36, pp.531-542, 1973.

V. Gagnaire, D. Molle, M. Herrouin, and J. Leonil, Peptides identified during Emmental cheese ripening: Origin and proteolytic systems involved, J. Agric. Food Chem, vol.49, pp.4402-4413, 2001.

B. Foligné, S. Parayre, R. Cheddani, M. Famelart, M. Madec et al., Immunomodulation properties of multi-species fermented milks, Food Microbiol, vol.53, pp.60-69, 2016.

Y. Ohtsuka and I. R. Sanderson, Dextran sulfate sodium-induced inflammation is enhanced by intestinal epithelial cell chemokine expression in mice, Pediatr. Res, vol.53, pp.143-147, 2003.

M. Per?e and A. Cerar, Dextran sodium sulphate colitis mouse model: Traps and tricks, J. Biomed. Biotechnol, 2012.

F. L. Do-carmo, H. Rabah, B. F. Cordeiro, S. H. Da-silva, R. M. Pessoa et al., Probiotic Propionibacterium freudenreichii requires SlpB protein to mitigate mucositis induced by chemotherapy, Oncotarget, vol.10, pp.7198-7219, 2019.

M. Vancamelbeke and S. Vermeire, The intestinal barrier: A fundamental role in health and disease, Expert Rev. Gastroenterol. Hepatol, vol.11, pp.821-834, 2017.

J. Landy, E. Ronde, N. English, S. K. Clark, A. L. Hart et al., Tight junctions in inflammatory bowel diseases and inflammatory bowel disease associated colorectal cancer, World J. Gastroenterol, vol.22, pp.3117-3126, 2016.

G. Roda, M. Marocchi, A. Sartini, and E. Roda, Cytokine Networks in Ulcerative Colitis, 2019.

A. Cardoso, A. Gil-castro, A. C. Martins, G. M. Carriche, V. Murigneux et al., The Dynamics of Interleukin-10-Afforded Protection during Dextran Sulfate Sodium-Induced Colitis, Front. Immunol, vol.9, p.400, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-01737190

J. J. Letterio and A. B. Roberts, Regulation of immune responses by TGF-beta, Annu. Rev. Immunol, vol.16, pp.137-161, 1998.

J. Wen, P. Yang, X. Chen, Y. Fang, Q. Chang et al., The role of Th17/Treg balance and Th22 cell in the pathogenesis of DSS-induced colitis in mice, Eur. J. Inflamm, vol.13, pp.101-108, 2015.

C. Lazzi, M. Povolo, F. Locci, V. Bernini, E. Neviani et al., Can the development and autolysis of lactic acid bacteria influence the cheese volatile fraction? The case of Grana Padano, Int. J. Food Microbiol, vol.233, pp.20-28, 2016.

X. Pang, S. Zhang, J. Lu, L. Liu, C. Ma et al., Identification and Functional Validation of Autolysis-Associated Genes in Lactobacillus bulgaricus ATCC BAA-365, Front. Microbiol, 1367.

F. Valence, S. M. Deutsch, R. Richoux, V. Gagnaire, and S. Lortal, Autolysis and related proteolysis in Swiss cheese for two Lactobacillus helveticus strains, J. Dairy Res, vol.67, pp.261-271, 2000.

B. Foligné, S. Nutten, L. Steidler, V. Dennin, D. Goudercourt et al., Recommendations for improved use of the murine TNBS-induced colitis model in evaluating anti-inflammatory properties of lactic acid bacteria: Technical and microbiological aspects, Dig. Dis. Sci, vol.51, pp.390-400, 2006.

L. Sang, B. Chang, B. Wang, W. Liu, and M. Jiang, Live and heat-killed probiotic: Effects on chronic experimental colitis induced by dextran sulfate sodium (DSS) in rats, Int. J. Clin. Exp. Med, 2015.

B. K. Thakur, P. Saha, G. Banik, D. R. Saha, S. Grover et al., Live and heat-killed probiotic Lactobacillus casei Lbs2 protects from experimental colitis through Toll-like receptor 2-dependent induction of T-regulatory response, Int. Immunopharmacol, vol.36, pp.39-50, 2016.

N. Ueno, M. Fujiya, S. Segawa, T. Nata, K. Moriichi et al., Heat-killed body of lactobacillus brevis SBC8803 ameliorates intestinal injury in a murine model of colitis by enhancing the intestinal barrier function, Inflamm. Bowel Dis, vol.17, pp.2235-2250, 2011.

A. Baer, Influence of casein proteolysis by starter bacteria, rennet and plasmin on the growth of propionibacteria in Swiss-type cheese, Lait, vol.75, pp.391-400, 1995.
URL : https://hal.archives-ouvertes.fr/hal-00929445

L. Brown, E. V. Pingitore, F. Mozzi, L. Saavedra, J. M. Villegas et al., Lactic Acid Bacteria as Cell Factories for the Generation of Bioactive Peptides, Protein Pept. Lett, vol.24, pp.146-155, 2017.

I. Politis and R. Chronopoulou, Milk Peptides and Immune Response in the Neonate, In Bioactive Components of Milk

Z. Bösze and . Ed, Advances in Experimental Medicine and Biology, pp.253-269, 2008.

T. Kaneko, A novel bifidogenic growth stimulator produced by Propionibacterium freudenreichii, Biosci. Microfl, vol.18, pp.73-80, 1999.

K. Seki, H. Nakao, H. Umino, H. Isshiki, N. Yoda et al., Effects of fermented milk whey containing novel bifidogenic growth stimulator produced by Propionibacterium on fecal bacteria, putrefactive metabolite, defecation frequency and fecal properties in senile volunteers needed serious nursing-care taking enteral nutrition by tube feeding, J. Intest. Microbiol, vol.18, pp.107-115, 2004.

V. R. Figliuolo, L. M. Santos, A. Abalo, H. Nanini, A. Santos et al., Sulfate-reducing bacteria stimulate gut immune responses and contribute to inflammation in experimental colitis, Life Sci, vol.189, pp.29-38, 2017.

V. R. Figliuolo, R. Coutinho-silva, and C. M. Coutinho, Contribution of sulfate-reducing bacteria to homeostasis disruption during intestinal inflammation, Life Sci, vol.215, pp.145-151, 2018.

I. Kushkevych, O. Le??anová, D. Dordevi?, S. Jan?íková, J. Ho?ek et al., The Sulfate-Reducing Microbial Communities and Meta-Analysis of Their Occurrence during Diseases of Small-Large Intestine Axis, J. Clin. Med, 1656.

J. L. Wallace, J. Motta, and A. G. Buret, Hydrogen sulfide: An agent of stability at the microbiome-mucosa interface, Am. J. Physiol. Gastrointest. Liver Physiol, vol.314, pp.143-149, 2018.

I. Kushkevych, V. Kotrsová, D. Dordevi?, L. Bu?ková, M. Vít?zová et al., Hydrogen Sulfide Effects on the Survival of Lactobacilli with Emphasis on the Development of Inflammatory Bowel Diseases. Biomolecules, vol.9, 2019.

I. Kushkevych, D. Dordevi?, P. Kollar, M. Vít?zová, and L. Drago, Hydrogen Sulfide as a Toxic Product in the Small-Large Intestine Axis and its Role in IBD Development, © 2020 by the authors. Licensee MDPI, 1054.