D. K. John and J. M. Ronald, Antennas: for all applications, 2002.

F. Costa and A. Monorchio, A frequency selective radome with wideband absorbing properties, IEEE Transactions on Antennas and Propag, vol.60, pp.2740-2747, 2012.

A. Chatterjee and S. K. Parui, Frequency-dependent directive radiation of monopole-dielectric resonator antenna using a conformal frequency selective surface, IEEE Transactions on Antennas and Propag, vol.65, pp.2233-2239, 2017.

W. Y. Yong, Flexible convoluted ring shaped FSS for X-band screening application, IEEE Access, vol.6, pp.11657-11665, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01784050

S. H. Huang, P. Liu, A. Mokasdar, and L. Hou, Additive manufacturing and its societal impact: a literature review, J. Adv. Manuf. Technol, vol.67, pp.1191-1203, 2013.

Y. Huang, M. C. Leu, J. Mazumder, and A. Donmez, Additive manufacturing: current state, future potential, gaps and needs, and recommendations, J. Manuf. Sci. Eng, vol.137, p.14001, 2015.

S. Gupta, W. T. Navaraj, L. Lorenzelli, and R. Dahiya, Ultra-thin chips for high-performance flexible electronics, NPJ Flex. Electron, vol.2, 2018.

M. Uz, Fabrication of high-resolution graphene-based flexible electronics via polymer casting, Sci. Reports, vol.9, p.10595, 2019.

D. J. Lipomi and Z. Bao, Stretchable and ultraflexible organic electronics, MRS Bull, vol.42, pp.93-97, 2017.

K. J. Yu, Z. Yan, M. Han, and J. A. Rogers, Inorganic semiconducting materials for flexible and stretchable electronics, NPJ Flex. Electron, vol.1, p.4, 2017.

M. G. Mohammed and R. Kramer, All-printed flexible and stretchable electronics, Adv. Mater, vol.29, p.1604965, 2017.

D. Kim, R. Ghaffari, N. Lu, and J. A. Rogers, Flexible and stretchable electronics for biointegrated devices, Annu. review of biomedical engineering, vol.14, pp.113-128, 2012.

M. Kaltenbrunner, An ultra-lightweight design for imperceptible plastic electronics, Nature, vol.499, p.458, 2013.

B. Leborgne, O. De-sagazan, S. Crand, E. Jacques, and M. Harnois, Conformal electronics wrapped around daily life objects using an original method: water transfer printing, ACS applied materials & interfaces, vol.9, pp.29424-29429, 2017.

G. A. Salvatore, Wafer-scale design of lightweight and transparent electronics that wraps around hairs, Nat. communications, vol.5, p.2982, 2014.

S. Wang, Skin electronics from scalable fabrication of an intrinsically stretchable transistor array, Nature, vol.555, p.83, 2018.

Y. Wang, A highly stretchable, transparent, and conductive polymer, Sci. advances, vol.3, p.1602076, 2017.

J. Xu, Highly stretchable polymer semiconductor films through the nanoconfinement effect, Science, vol.355, pp.59-64, 2017.

R. Rogel, B. L. Borgne, T. Mohammed-brahim, E. Jacques, and M. Harnois, Spontaneous buckling of multiaxially flexible and stretchable interconnects using pdms/fibrous composite substrates, Adv. Mater. Interfaces, vol.4, p.1600946, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01553056

P. Fattahi, G. Yang, G. Kim, and M. R. Abidian, A review of organic and inorganic biomaterials for neural interfaces, Adv. mater, vol.26, pp.1846-1885, 2014.

H. Xu, L. Yin, C. Liu, X. Sheng, and N. Zhao, Recent advances in biointegrated optoelectronic devices, Adv. Mater, vol.30, p.1800156, 2018.

M. Kaltenbrunner, Ultrathin and lightweight organic solar cells with high flexibility, Nat. Commun, vol.3, p.770, 2012.

J. A. Paulsen, M. Renn, K. Christenson, and R. Plourde, Printing conformal electronics on 3D structures with Aerosol Jet technology, Future of Instrumentation International Workshop (FIIW) Proceedings, pp.1-4, 2012.

A. D. Valentine, Hybrid 3d printing of soft electronics, Adv. Mater, vol.29, p.1703817, 2017.

B. Bachy, Novel Ceramic-Based Material for the Applications of Molded Interconnect Devices (3D-MID) Based on Laser Direct Structuring, Adv. Eng. Mater, vol.20, p.1700824, 2018.

Y. Yang, 3D Multifunctional Composites Based on Large-Area Stretchable Circuit with Thermoforming Technology, Adv. Electron. Mater, vol.4, p.1800071, 2018.

B. Leborgne, Water Transfer Printing Enhanced by Water-Induced Pattern Expansion: Toward Large-Area 3D Electronics, Adv. Mater. Technol, vol.4, p.1800600, 2019.

L. W. Ng, Conformal Printing of Graphene for Single-and Multilayered Devices onto Arbitrarily Shaped 3D Surfaces, Adv. Funct. Mater, p.1807933, 2019.

G. Saada, M. Layani, A. Chernevousky, and S. Magdassi, Hydroprinting conductive patterns onto 3D structures, Advanced Materials Technologies, vol.2, p.1600289, 2017.

B. Leborgne, E. Jacques, and M. Harnois, The use of a water soluble flexible substrate to embed electronics in additively manufactured objects: From tattoo to water transfer printed electronics, vol.9, p.474, 2018.

Y. Zhang, C. Yin, C. Zheng, and K. Zhou, Computational hydrographic printing, ACM Transactions on Graph. (TOG), vol.34, p.131, 2015.

D. Panozzo, Texture mapping real-world objects with hydrographics, Computer Graphics Forum, vol.34, pp.65-75, 2015.

M. Robin, Epoxy based ink as versatile material for inkjet-printed devices, ACS applied materials & interfaces, vol.7, pp.21975-21984, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01205444

S. J. Moon, Morphological impact of insulator on inkjet-printed transistor, Flexible and Printed Electronics, vol.2, p.35008, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01622463

Z. Tao, B. Leborgne, T. Mohammed-brahim, E. Jacques, and M. Harnois, Spreading and drying impact on printed pattern accuracy due to phase separation of a colloidal ink, Colloid and Polym. Sci, vol.296, pp.1749-1758, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01894675