M. A. Green, Solar cell efficiency tables (version 51) Prog, Photovolt. Res. Appl, vol.26, pp.3-12, 2018.

, Solar Frontier achieves world record thin-film solar cell efficiency of 22, p.9

. Solar and . Frontier, , 2017.

. Accessed, , 2018.

W. Yang, J. Noh, and N. Jeon, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange, Science, vol.348, issue.6240, pp.1234-1237, 2015.

C. Chen, Characterization of basic physical properties of Sb 2 Se 3 and its relevance for photovoltaics, Front. Optoelectron, vol.10, pp.18-30, 2017.

C. Yuan, Rapid thermal process to fabricate Sb 2 Se 3 thin film for solar cell application

, Sol. Energy, vol.137, pp.256-260, 2016.

K. Shen, Mechanisms and modification of nonlinear shunt leakage in Sb 2 Se 3 thin film solar cells, Sol. Energy Mater. Sol. Cells, vol.186, pp.58-65, 2018.

Y. Zhou, Thin-film Sb 2 Se 3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries, Nat. Photon, vol.9, pp.409-415, 2015.

Y. Zhou, Solution-processed antimony selenide heterojunction solar cells, Adv. Energy Mater, vol.4, pp.1079-1083, 2014.

H. F. Guo, Significant increase in efficiency and limited toxicity of a solar cell based on Sb 2 Se 3 with SnO 2 as a buffer layer, J. Mater. Chem. C, vol.7, issue.45, pp.14350-14356, 2019.

W. Wang, Over 6% Certified Sb 2 (S,Se) 3 solar cells fabricated via in situ hydrothermal growth and post-selenization, Adv. Electron Mater, vol.5, p.1800683, 2018.

J. Cheng, Air Stable Solar Cells with 0.7 V Open Circuit Voltage Using Selenized Antimony Sulfide Absorbers Prepared by Hydrazine Free Solution Method, Sol. RRL, vol.3, issue.5, p.1800346, 2019.

X. Liu, Thermal evaporation and characterization of Sb 2 Se 3 thin film for substrate Sb 2 Se 3 /CdS solar cells, ACS Appl. Mater. Interfaces, vol.6, pp.10687-10695, 2014.

M. Leng, Selenization of Sb 2 Se 3 absorber layer: an efficient step to improve device performance of CdS/ Sb 2 Se 3 solar cells, Appl. Phys. Lett, vol.105, p.83905, 2014.

X. Liu, Improving the performance of Sb 2 Se 3 thin film solar cells over 4% by controlled addition of oxygen during film deposition, Prog. Photo. Res. Appl, vol.23, pp.1828-1836, 2015.

L. Wang, Stable 6%-efficient Sb 2 Se 3 solar cells with a ZnO buffer layer, Nat. Energy, vol.2, p.17046, 2017.

X. Wen, Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency, Nat. Commun, vol.9, p.2179, 2018.

X. B. Hu, Improving the efficiency of Sb 2 Se 3 thin-film solar cells by post annealing treatment in vacuum condition, Sol. Energy Mater. Sol. Cells, vol.187, pp.170-175, 2018.

J. Tao, Solution-processed SnO 2 interfacial layer for highly efficient Sb 2 Se 3 thin film solar cells, Nano Energy, vol.60, pp.802-809, 2019.

Z. Q. Li, 2%-efficient core-shell structured antimony selenide nanorod array solar cells, Nat. Commun, vol.9, p.125, 2019.

D. Li, Stable and efficient CdS/Sb 2 Se 3 solar cells prepared by scalable close space sublimation, Nano Energy, vol.49, pp.346-353, 2018.

G. X. Liang, Facile preparation and enhanced photoelectrical performance of Sb 2 Se 3 nano-rods by magnetron sputtering deposition, Sol. Energy Mater. Sol. Cells, vol.160, pp.257-262, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01438108

G. X. Liang, Thermally induced structural evolution and performance of Sb 2 Se 3 films and nanorods prepared by an easy sputtering method, Sol. Energy Mater. Sol. Cells, vol.174, pp.263-270, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01619420

G. Li, Improvement in Sb 2 Se 3 Solar Cell Efficiency through Band Alignment Engineering at the Buffer/Absorber Interface, Appl. Mater. Interfaces, vol.11, pp.828-834, 2019.

J. H. Shi, Fabrication of Cu(In,Ga)Se 2 thin films by sputtering from a single quaternary chalcogenide target, Prog. Photovolt. Res. Appl, vol.19, issue.2, pp.160-164, 2011.

C. Yan, Cu 2 ZnSnS 4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment, Nat Energy, vol.3, issue.9, p.764, 2018.

. Chawla, Effect of composition on high efficiency CZTSSe devices fabricated using co-sputtering of compound targets, 38th IEEE Photovoltaic Specialists Conference, pp.2990-002992, 2012.

R. Tang, Highly efficient and stable planar heterojunction solar cell based on sputtered and post-selenized Sb 2 Se 3 thin film, Nano Energy, vol.64, p.103929, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02281773

M. Ganchev, Preparation of Cu(In,Ga)Se 2 layers by selenization of electrodeposited Cu-In-Ga precursors, Thin Solid Films, vol.511, pp.325-327, 2006.

L. Yao, CZTSe solar cells prepared by electrodeposition of Cu/Sn/Zn stack layer followed by selenization at low Se pressure, Nanoscale Res Lett, vol.9, issue.1, p.678, 2014.

P. M. Salomé, Growth and characterization of Cu 2 ZnSn(S, Se) 4 thin films for solar cells, Sol. Energy Mater. Sol. Cells, vol.101, pp.147-153, 2012.

G. Kresse and J. Furthmüller, Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set, Phys. Rev. B, vol.54, pp.11169-11186, 1996.

G. Kresse and J. Furthmüller, Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set, Comp. Mater. Sci, vol.6, pp.15-50, 1996.

P. E. Blöchl, Projector Augmented-Wave Method, Phys. Rev. B, vol.50, pp.17953-17979, 1994.

G. Kresse and D. Joubert, From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method, Phys. Rev. B, vol.59, pp.1758-1775, 1999.

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett, vol.77, pp.3865-3868, 1996.

H. J. Monkhorst and J. D. Pack, Special Points for Brillouin-Zone Integrations, Phys. Rev. B, vol.13, pp.5188-5192, 1976.

R. G. Ross, W. Hume-rothery, H. Temperature, and X. Metallography, I. A New Debye-Scherrer Camera for Use at Very High Temperatures Ii. A New Parafocusing Camera Iii
URL : https://hal.archives-ouvertes.fr/hal-00619239

, Applications to the Study of Chromium, Hafnium, Molybdenum, Rhodium, Ruthenium and Tungsten, J. Less Common Metals, vol.5, pp.258-270, 1963.

D. Schiferl, 50-Kilobar Gasketed Diamond Anvil Cell for Single-Crystal X-Ray Diffractometer Use with the Crystal Structure of Sb up to 26 Kilobars as a Test Problem, Rev. Sci. Instrum, vol.48, pp.24-30, 1977.

Z. H. Su, Fabrication of Cu 2 ZnSnS 4 solar cells with 5.1% efficiency via thermal decomposition and reaction using a non-toxic sol-gel route, J. Mater. Chem. A, vol.2, issue.2, pp.500-509, 2014.

J. J. Li, A temporary barrier effect of the alloy layer during selenization: tailoring the thickness of MoSe 2 for efficient Cu 2 ZnSnSe 4 solar cells, Adv. Energy Mater, vol.5, issue.9, p.1402178, 2015.

J. R. Sites, Diode quality factor determination for thin-film solar cells, Sol. Cells, vol.27, pp.411-417, 1989.

M. Ishaq, Efficient Double Buffer Layer Sb 2 (Se x S 1-x ) 3 Thin Film Solar Cell Via Single Source Evaporation, Sol. RRL, vol.2, issue.10, p.1800144, 2018.

A. Chirila, Highly efficient Cu(In,Ga)Se 2 solar cells grown on flexible polymer films, Nat. mater, vol.10, pp.857-861, 2011.

J. J. Li, 10% Efficiency Cu 2 ZnSn(S,Se) 4 thin film solar cells fabricated by magnetron sputtering with enlarged depletion region width, Sol. Energy Mater. Sol. Cells, vol.149, pp.242-249, 2016.

Z. Q. Li, Sb 2 Se 3 thin film solar cells in substrate configuration and the back contact selenization, Sol. Energy Mater. Sol. Cells, vol.161, pp.190-196, 2017.

S. C. Liu, GeSe thin-film solar cells, Mater. Chem. Front, 2020.

X. B. Hu, Investigation of electrically-active defects in Sb 2 Se 3 thin-film solar cells with up to 5.91% efficiency via admittance spectroscopy, Sol. Energy Mater. Sol. Cells, vol.186, pp.324-329, 2018.

J. J. Li, Tailoring the defects and carrier density for beyond 10% efficient CZTSe thin film solar cells, Sol. Energy Mater. Sol. Cells, vol.159, pp.447-455, 2017.

X. S. Liu, Enhanced Sb 2 Se 3 solar cell performance through theory-guided defect control, Prog. Photovolt. Res. Appl, vol.25, issue.10, pp.861-870, 2017.

H. F. Guo, Enhancement in the Efficiency of Sb 2 Se 3 Thin Film Solar Cells by Increasing Carrier Concertation and Inducing Columnar Growth of the Grains, Sol. RRL, vol.3, issue.3, p.1800224, 2019.