G. Mani, M. D. Feldman, D. Patel, and C. M. , Coronary stents: A materials perspective, vol.28, pp.1689-1710, 2007.

T. Hanawa, Materials for metallic stents, J. Artif. Organs, vol.12, pp.73-79, 2009.

S. G. Steinemann, Metal implants and surface reactions, Injury, vol.27, pp.16-22, 1996.

I. Gotman, Characteristics of metals used in implants, J Endourol, vol.11, pp.383-389, 1997.

M. Long and H. J. Rack, Titanium alloys in total joint replacement: A material science perspective, Biomaterials, vol.19, pp.1621-1639, 1998.

M. Niinomi, Recent research and development in titanium alloys for biomedical applications and healthcare goods, vol.4, pp.445-454, 2003.

T. A. Donato, L. H. De-almeida, R. A. Nogueira, T. C. Niemeyer, C. R. Grandini et al.,

S. G. Caram, A. R. Schneider, and . Santos, Cytotoxicity study of some Ti alloys used as biomaterial, Mat. Sci. Eng. C, vol.29, pp.1365-1369, 2009.

M. Geetha, A. K. Singh, R. Asokamani, and A. K. Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants -A review, Prog. Mater. Sci, vol.54, pp.397-425, 2009.

M. Niinomi, M. Nakai, and J. Hieda, Development of new metallic alloys for biomedical applications, Acta Biomater, vol.8, pp.3888-3903, 2012.

B. O'brien, J. Stinson, and W. Carroll, Initial exploration of Ti-Ta, Ti-Ta-Ir and Ti-Ir alloys: Candidate materials for coronary stents, Acta Biomater, vol.4, pp.1553-1559, 2008.

S. G. Steinemann, Titanium: the material of choice ?, Periodontology, vol.17, pp.7-21, 1998.

M. Niinomi, Fatigue performance and cyto-toxicity of low rigidity titanium alloy, Ti-29Nb-13Ta-4.6Zr, Biomaterials, vol.24, pp.2673-2683, 2003.

S. Miyazaki, H. Y. Kim, and H. Hosoda, Development and characterization of Ni-free Ti-base shape memory and superelastic alloys, Mater. Sci. Eng, pp.18-24, 2006.

Y. L. Hao, S. J. Li, S. Y. Sun, and R. Yang, Effect of Zr and Sn on Young's modulus and superelasticity of Ti-Nb-based alloys, Mater. Sci. Eng, vol.441, pp.112-118, 2006.

F. Sun, Y. L. Hao, S. Nowak, T. Gloriant, P. Laheurte et al., , p.12

, treatment to improve the superelastic performances of biomedical Ti-26Nb and Ti-20Nb-6Zr (at.%) alloys, J. Mech. Behav. Biomed. Mater, vol.4, pp.1864-1872, 2011.

D. Banerjee and J. C. Williams, Perspectives on Titanium Science and Technology, vol.61, pp.844-852, 2013.

F. Sun, F. Prima, and T. Gloriant, High-strength nanostructured Ti-12Mo alloy from ductile metastable beta state precursor, Mater. Sci. Eng. A527, pp.4262-4269, 2010.

F. Sun, J. Y. Zhang, M. Marteleur, T. Gloriant, P. Vermaut et al., Investigation of early stage deformation mechanisms in a metastable ? titanium alloy showing combined twinning-induced plasticity and transformation-induced plasticity effects, Acta Mater, vol.61, pp.6406-6417, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00865174

H. Matsuno, A. Yokoyama, F. Watari, M. Uo, and T. Kawasaki, Biocompatibility and osteogenesis of refractory metal implants Ti, vol.22, pp.1253-1262, 2001.

Y. Okazaki, S. Rao, Y. Ito, and T. Tateishi, Corrosion resistance, mechanical properties, corrosion fatigue strength and cytocompatibility of new Ti alloys without Al and V, Biomaterials, vol.19, pp.1197-1215, 1998.

D. M. Gordin, R. Ion, C. Vasilescu, S. I. Drob, A. Cimpean et al., Potentiality of the "Gum Metal" titanium-based alloy for biomedical applications, Mater. Sci. Eng, vol.44, pp.362-370, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01114529

E. Eisenbarth, D. Velten, M. Müller, R. Thull, and J. Breme, Biocompatibility of betastabilizing elements of titanium alloys, Biomaterials, vol.25, pp.5705-5713, 2004.

W. F. Ho, C. P. Ju, and J. H. Chern-lin, Structure and properties of cast Ti-Mo alloys, Biomaterials, vol.20, pp.2115-2122, 1999.

D. M. Gordin, T. Gloriant, G. Texier, I. Thibon, D. Ansel et al., Development of a ßtype Ti.12Mo.5Ta alloy for biomedical applications: cytocompatibility and metallurgical aspects, J. Mater. Sci. Mater. Med, vol.15, pp.885-891, 2004.

S. Nag, R. Banerjee, and H. L. Fraser, Microstructural evolution and strengthening mechanisms in Ti-Nb-Zr-Ta, Ti-Mo-Zr-Fe and Ti-15Mo biocompatible alloys, Mater. Sci

. Eng, , pp.357-362, 2005.

L. Trentania, F. Pelilloa, F. C. Pavesia, L. Ceciliania, G. Cettab et al., , p.13

, the TiMo12Zr6Fe2 alloy for orthopaedic implants: in vitro biocompatibility study by using primary human fibroblasts and osteoblasts, Biomaterials, vol.23, pp.2863-2869, 2002.

P. J. Bania, Beta titanium alloys and their role in the titanium industry, Proceedings of the 13th World Conference on Titanium, pp.3-14, 1993.

T. Gloriant, G. Texier, F. Prima, D. Laillé, D. M. Gordin et al., Synthesis and phase transformations of beta metastable Tibased alloys containing biocompatible Ta, Mo and Fe betastabilizer elements, Adv. Eng. Mater, vol.8, pp.961-965, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00496129

P. , N. , D. Gordin, V. Mitran, T. Gloriant et al., In vitro performance assessment of new beta Ti-Mo-Nb alloy compositions, Mater. Sci. Eng, vol.47, pp.105-113, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01153416

R. Chelariu, G. Bolat, J. Izquierdo, D. Mareci, D. M. Gordin et al., Metastable beta Ti-Nb-Mo alloys with improved corrosion resistance in saline solution, Electrochim. Acta, vol.137, pp.280-289, 2014.

D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, and T. Yashiro, Design and mechanical properties of new ? type titanium alloys for implant materials, Mater. Sci. Eng, vol.243, pp.244-249, 1998.

M. Abdel-hady, K. Hinshita, and M. Morinaga, General approach to phase stability and elastic properties of beta-type Ti-alloys using electronic parameters, Script. Mater, vol.55, pp.477-480, 2006.

M. Morinaga, N. Yukawa, T. Maya, K. Sone, and H. Adachi, Theoretical design of titanium alloys, Proceedings of the Sixth World Conference on Titanium, pp.1601-1606, 1988.

D. M. Gordin, E. Delvat, R. Chelariu, G. Ungureanu, M. Besse et al., Characterization of Ti.Ta alloys synthesized by cold crucible levitation melting, Adv. Eng. Mater, vol.10, pp.714-719, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00761479

K. Matsugi, T. Endo, Y. B. Choi, and G. Sasaki, Alloy design of Ti alloys using ubiquitous alloying elements and characteristics of their levitation-melted alloys, Mater. Trans, vol.51, pp.740-748, 2010.

J. H. Hollomon, Tensile deformation, Trans. AIME, vol.162, pp.268-290, 1945.

R. K. Nutor, N. K. Adomako, and Y. Z. Fang, Using the Hollomon model to predict strainhardening in metals, Am. J. Mater. Synth. Proc, vol.2, pp.1-4, 2017.

P. Castany, A. Ramarolahy, F. Prima, P. Laheurte, C. Curfs et al., situ synchrotron X-ray diffraction study of the martensitic transformation in superelastic Ti-24Nb
URL : https://hal.archives-ouvertes.fr/hal-01153415

T. 5n, Acta Mater, vol.88, pp.102-111, 2015.

J. W. Christian, Some surprising features of the plastic deformation of body-centered cubic metals and alloys, Metall. Trans. A, vol.14, pp.1237-1256, 1983.

P. Castany, M. Besse, and T. Gloriant, situ TEM study of dislocation slip in a metastable ? titanium alloy, vol.66, pp.371-373, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00864935

P. Castany, T. Gloriant, F. Sun, and F. Prima, Design of strain-transformable titanium alloys, Comptes Rendus Physique, vol.19, pp.710-720, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01978011

S. Hanada and O. Izumi, Transmission electron-microscopic observations of mechanical twinning in metastable beta titanium alloys, Metall. Trans. A, vol.17, pp.1409-1420, 1986.

E. Bertrand, P. Castany, I. Péron, and T. Gloriant, Twinning system selection in a metastable ?-titanium alloy by Schmid factor analysis, Scripta Mater, vol.64, pp.1110-111, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00926958

O. Bouaziz and N. Guelton, Modelling of TWIP effect on work-hardening, Mater. Sci. Eng, pp.246-249, 2001.

M. J. Lai, C. C. Tasan, and D. Raabe, On the mechanism of 332 twinning in metastable ? titanium alloys, Acta Mater, vol.111, pp.173-186, 2016.

B. Chen and W. Sun, Transitional structure of {332}<113> ? twin boundary in a deformed metastable ?-type Ti-Nb-based alloy, revealed by atomic resolution electron microscopy, Scripta Mater, vol.150, pp.115-119, 2018.

P. Castany, Y. Yang, E. Bertrand, and T. Gloriant, Reversion of a parent {130}<310>?" martensitic twinning system at the origin of {332}<113>? twins observed in metastable ? titanium alloys, Phys. Rev. Lett, vol.117, p.245501, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01438121

L. Lilensten, Y. Danard, C. Brozek, S. Mantri, P. Castany et al., On the heterogeneous nature of deformation in a strain-transformable beta metastable Ti-V-Cr-Al alloy, Acta Mater, vol.162, pp.268-276, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01952279

R. K. Gupta, V. A. Kumar, C. Mathew, and G. S. Rao, Strain hardening of titanium alloy Ti6Al4V sheets with prior heat treatment and cold working, Mat. Sci. Eng, vol.662, pp.537-552, 2016.

E. I. Samuel and B. K. Choudhary, Universal scaling of work hardening parameters in type 316L(N) stainless steel, Mater. Sci. Eng. A527, pp.7457-7460, 2010.

K. Yamanaka, M. Mori, and A. Chiba, Effects of nitrogen addition on microstructure and mechanical behavior of biomedical Co-Cr-Mo alloys, J. Mech. Behav. Biomed. Mater, vol.29, pp.417-426, 2014.