J. R. Katz, Röntgenspektrographische Untersuchungen am gedehnten Kautschuk und ihre mögliche Bedeutung für das Problem der Dehnungseigenschaften dieser Substanz, Naturwiss, vol.13, p.410, 1925.

C. Bunn, Proc. R. Soc. London, Ser. A, vol.180, p.1, 1942.

Y. Takahashi and T. Kumano, Crystal structure of natural rubber, Macromolecules, vol.37, p.4860, 2004.

A. Immirzi, C. Tedesco, G. Monaco, and A. E. Tonelli, Crystal structure and melting entropy of natural rubber, Macromolecules, vol.38, p.1223, 2005.

G. Rajkumar, J. M. Squire, and S. Arnott, A new structure for crystalline natural rubber, Macromolecules, vol.39, p.7004, 2006.

S. Toki, I. Sics, B. S. Hsiao, S. Murakami, M. Tosaka et al., Structural developments in synthetic rubbers during uniaxial deformation by in situ synchrotron X-ray diffraction, J. Polym. Sci. B: Polym. Phys, vol.42, p.956, 2004.

S. Toki, T. Fujimaki, and M. Okuyama, Strain-induced crystallization of natural rubber as detected real-time by wide-angle x-ray diffraction technique, Polymer, vol.41, pp.5423-5429, 2000.

S. Trabelsi, P. Albouy, and J. Rault, Effective local deformation in stretched fille rubber, Macromolecules, vol.36, pp.9093-9099, 2003.

D. Göritz and F. H. Müller, Die kalorimetrische erfassung der dehnungskristallisation polymerer, Kolloid-Z. Z. Polym, vol.241, pp.1075-1079, 1970.

S. Trabelsi, P. Albouy, and J. Rault, Stress-induced crystallization around a crack tip in natural rubber, Macromolecules, vol.35, pp.10054-10061, 2002.

P. Rublon, B. Huneau, E. Verron, N. Saintier, S. Beurrot et al., Multiaxial deformation and strain-induced crystallization around a fatigue crack in natural rubber, Eng. Fract. Mech, vol.123, pp.59-69, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01010899

A. Chrysochoos, Analyse du comportement des matériaux par thermographie infra rouge, Colloq. Photomécanique, vol.95, pp.201-211, 1995.

J. R. Martinez, J. Cam, X. Balandraud, E. Toussaint, and J. Caillard, Mechanisms of deformation in crystallizable natural rubber. Part 2: Quantitative calorimetric analysis, Polymer, vol.54, pp.2727-2736, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01131576

J. Cam, J. R. Martinez, X. Balandraud, E. Toussaint, and J. Caillard, Thermomechanical analysis of the singular behavior of rubber: Entropic elasticity, reinforcement by fillers strain-induced crystallization and the Mullins effect, Exp. Mech, vol.55, pp.771-782, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01658072

J. R. Martinez, X. Balandraud, E. Toussaint, J. Cam, and D. Berghezan, Thermomechanical analysis of the crack tip zone in stretched crystallizable natural rubber by using infrared thermography and digital image correlation, Polymer, vol.55, pp.6345-6353, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01148251

J. R. Martinez, E. Toussaint, X. Balandraud, J. Cam, and D. Berghezan, Heat and strain measurements at the crack tip of fille rubber under cyclic loadings using full-fiel techniques, Mech. Mater, vol.81, pp.62-71, 2015.

J. Cam, Energy storage due to strain-induced crystallization in natural rubber: The physical origin of the mechanical hysteresis, Polymer, vol.127, pp.166-173, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01619285

A. Lachhab, E. Robin, J. Cam, F. Mortier, Y. Tirel et al., Energy stored during deformation of crystallizing TPU foams, Strain, vol.54, p.12271, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01861353

M. T. Loukil, G. Corvec, E. Robin, M. Miroir, J. Cam et al., Stored energy accompanying cyclic deformation of fille rubber, Eur. Polym. J, vol.98, pp.448-455, 2018.

J. Cam, Strain-induced crystallization in rubber: A new measurement technique, Strain, vol.54, p.12256, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01695571

P. Albouy, A. Vieyres, R. Pérez-aparicio, O. Sanséau, and P. Sotta, The impact of strain-induced crystallization on strain during mechanical cycling of cross-linked natural rubber, Polymer, vol.55, pp.4022-4031, 2014.

P. Albouy and P. Sotta, Draw ratio at the onset of strain-induced crystallization in cross-linked natural rubber, Macromolecules, vol.53, pp.992-1000, 2020.

T. Spratte, J. Plagge, M. Wunde, and M. Klüppel, Investigation of straininduced crystallization of carbon black and silica fille natural rubber composites based on mechanical and temperature measurements, Polymer, vol.115, pp.12-20, 2017.

, In this case, only a one-point temperature measurement is required, meaning that the crystallinity can be evaluated with a pyrometer

L. R. Treloar, The elasticity and related properties of rubbers, Rep. Prog. Phys, vol.36, p.755, 1973.

E. Toussaint, X. Balandraud, J. Cam, and M. Grédiac, Combining displacement, strain, temperature and heat source field to investigate the thermomechanical response of an elastomeric specimen subjected to large deformations, Polym. Test, vol.31, pp.916-925, 2012.

J. R. Martinez, J. Cam, X. Balandraud, E. Toussaint, and J. Caillard, Mechanisms of deformation in crystallizable natural rubber. Part 1: Thermal characterization, Polymer, vol.54, pp.2717-2726, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01131576

, Here, the heat source is expressed in ? /s, i.e. S ?C