H. Iwamura, K. Mislow, T. R. Kelly, H. Silva, R. Silva et al., Great Expectations: Can Artificial Molecular Machines Deliver on Their Promise?, Acc. Chem. Res, vol.21, p.19, 1988.

T. R. Kelly, M. C. Bowyer, K. V. Bhaskar, D. Bebbington, A. Garcia et al., Positive Allosteric Effect in the Molecular Recognition of Dicarboxylic Acids by a Cerium(IV) Bis[tetrakis(4-pyridyl)porphyrinate] Double Decker, Angew. Chem. Int. Ed, vol.116, p.8240, 1994.

J. Yang, Y. Huang, J. Ho, W. Sun, H. Huang et al., A Pentiptycene-Derived Light-Driven Molecular Brake, Org. Lett, vol.11, p.2279, 2008.

M. C. Basheer, Y. Oka, M. Mathews, and N. Tamaoki, A Light-Controlled Molecular Brake with Complete ON-OFF Rotation, Chem. Eur. J, vol.14, p.3489, 2008.

Y. Iwasaki, R. Morisawa, S. Yokojima, H. Hasegawa, C. Roussel et al., Axially Chiral Anilines: Electronic Effect on Barrier to Rotation and A Remote Proton Brake, Chem. Eur. J, p.4453, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01771098

B. E. Dial, R. D. Rasberry, B. N. Bullock, M. D. Smith, P. J. Pellechia et al., C bond rotation: (a)

B. E. Dial, P. J. Pellechia, M. D. Smith, and K. D. Shimizu, Proton Grease: An Acid Accelerated Molecular Rotor, Org. Lett, 2011.

Y. Wu, G. Wang, Q. Li, J. Xiang, H. Jiang et al., A multistage rotational speed changing molecular rotor regulated by pH and metal cations, Nat. Commun, vol.134, p.3675, 1953.

, Although the aromatic nucleophilic substitution of 2-iso-propylaniline with 4-bromo-pyridine hydrochloride gave the desired N-(4-pyridyl)-2-iso-propylaniline, the chemical yield was poor

A. S. Guram, R. A. Rennels, and S. L. Buchwald, A Simple Catalytic Method for the Conversion of Aryl Bromides to Arylamines, Angew. Chem. Int. Ed. Engl, vol.34, p.1348, 1995.

J. F. Hartwig and J. Loue, Palladium-catalyzed synthesis of arylamines from aryl halides

, Mechanistic studies lead to coupling in the absence of tin reagents, Tetrahedron Lett, p.3609, 1995.