M. A. Nieto, Cell, vol.166, pp.21-45, 2016.

J. P. Thiery, Epithelial-mesenchymal transitions in tumour progression, Nat Rev Cancer, vol.2, pp.442-454, 2002.

R. L. Trelstad, Cell contact during early morphogenesis in the chick embryo, Dev Biol, vol.16, pp.78-106, 1967.

G. Greenburg and E. D. Hay, Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells, J Cell Biol, vol.95, pp.333-339, 1982.

M. P. Stemmler, Non-redundant functions of EMT transcription factors, Nat Cell Biol, vol.21, pp.102-112, 2019.

J. P. Thiery, Epithelial-mesenchymal transitions in development and disease, Cell, vol.139, pp.871-890, 2009.

V. Arnoux, Erk5 controls Slug expression and keratinocyte activation during wound healing, Mol Biol Cell, vol.19, pp.4738-4749, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00318681

N. Ahmed, Molecular pathways regulating EGF-induced epitheliomesenchymal transition in human ovarian surface epithelium, Am J Physiol Cell Physiol, vol.290, pp.1532-1542, 2006.

A. Lepilina, A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration, Cell, vol.127, pp.607-619, 2006.

U. H. Frixen, E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells, J Cell Biol, vol.113, pp.173-185, 1991.

K. F. Becker, E-cadherin gene mutations provide clues to diffuse type gastric carcinomas, Cancer Res, vol.54, pp.3845-3852, 1994.

G. Berx, E-cadherin is a tumour/invasion suppressor gene mutated in human lobular breast cancers, EMBO J, vol.14, pp.6107-6115, 1995.

P. Guilford, E-cadherin germline mutations in familial gastric cancer, Nature, vol.392, pp.402-405, 1998.

J. Yang, Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis, Cell, vol.117, pp.927-939, 2004.

A. W. Lambert, Emerging Biological Principles of Metastasis, Cell, vol.168, pp.670-691, 2017.

I. Pastushenko, Identification of the tumour transition states occurring during EMT, Nature, vol.556, pp.463-468, 2018.

D. R. Pattabiraman and R. A. Weinberg, Tackling the cancer stem cellswhat challenges do they pose?, Nat Rev Drug Discov, vol.13, pp.497-512, 2014.

I. Pastushenko and C. Blanpain, EMT Transition States during Tumor Progression and Metastasis, Trends Cell Biol, vol.29, pp.212-226, 2019.

A. Dongre and R. A. Weinberg, New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer, Nat Rev Mol Cell Biol, vol.20, pp.69-84, 2019.

S. A. Mani, The epithelial-mesenchymal transition generates cells with properties of stem cells, Cell, vol.133, pp.704-715, 2008.

A. P. Morel, Generation of breast cancer stem cells through epithelialmesenchymal transition, PLoS One, vol.3, p.2888, 2008.

W. Guo, Slug and Sox9 cooperatively determine the mammary stem cell state, Cell, vol.148, pp.1015-1028, 2012.

M. Nassour, Slug controls stem/progenitor cell growth dynamics during mammary gland morphogenesis, PLoS One, vol.7, p.53498, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00773662

S. Phillips, Cell-state transitions regulated by SLUG are critical for tissue regeneration and tumor initiation, Stem Cell Reports, vol.2, pp.633-647, 2014.

X. Ye, Distinct EMT programs control normal mammary stem cells and tumour-initiating cells, Nature, vol.525, pp.256-260, 2015.

T. A. Proia, Genetic predisposition directs breast cancer phenotype by dictating progenitor cell fate, Cell Stem Cell, vol.8, pp.149-163, 2011.

E. L. Mccoy, Six1 expands the mouse mammary epithelial stem/progenitor cell pool and induces mammary tumors that undergo epithelialmesenchymal transition, J Clin Invest, vol.119, pp.2663-2677, 2009.

A. P. Morel, EMT inducers catalyze malignant transformation of mammary epithelial cells and drive tumorigenesis towards claudin-low tumors in transgenic mice, PLoS Genet, vol.8, p.1002723, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00712474

U. Wellner, The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs, Nat Cell Biol, vol.11, pp.1487-1495, 2009.

M. H. Yang, Bmi1 is essential in Twist1-induced epithelialmesenchymal transition, Nat Cell Biol, vol.12, pp.982-992, 2010.

W. L. Hwang, MicroRNA-146a directs the symmetric division of Snaildominant colorectal cancer stem cells, Nat Cell Biol, vol.16, pp.268-280, 2014.

S. Brabletz, The ZEB1/miR-200 feedback loop controls Notch signalling in cancer cells, EMBO J, vol.30, pp.770-782, 2011.

V. J. Guen, EMT programs promote basal mammary stem cell and tumor-initiating cell stemness by inducing primary ciliogenesis and Hedgehog signaling, Proc Natl Acad Sci, 2017.

M. J. Wu, Epithelial-Mesenchymal Transition Directs Stem Cell Polarity via Regulation of Mitofusin, Cell Metab, vol.29, p.1006, 2019.

Y. Shimono, Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells, Cell, vol.138, pp.592-603, 2009.

M. E. Valk-lingbeek, Stem cells and cancer; the polycomb connection, Cell, vol.118, pp.409-418, 2004.

H. R. Siddique and M. Saleem, Role of BMI1, a stem cell factor, in cancer recurrence and chemoresistance: preclinical and clinical evidences, Stem Cells, vol.30, pp.372-378, 2012.