A. Skibinski and C. Kuperwasser, The origin of breast tumor heterogeneity, Oncogene, vol.34, pp.5309-5316, 2015.

C. M. Perou, T. Sørlie, M. B. Eisen, M. Van-de-rijn, S. S. Jeffrey et al., Molecular portraits of human breast tumours, Nature, vol.406, pp.747-752, 2000.

T. Sørlie, C. M. Perou, R. Tibshirani, T. Aas, S. Geisler et al., Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications, Proc. Natl. Acad. Sci. U. S. A, vol.98, pp.10869-10874, 2001.

N. Platet, A. M. Cathiard, M. Gleizes, and M. Garcia, Estrogens and their receptors in breast cancer progression: a dual role in cancer proliferation and invasion, Crit. Rev. Oncol. Hematol, vol.51, pp.55-67, 2004.
URL : https://hal.archives-ouvertes.fr/inserm-00144757

K. Dahlman-wright, V. Cavailles, S. A. Fuqua, V. C. Jordan, J. A. Katzenellenbogen et al.,

, Estrogen receptors, Pharmacol. Rev, vol.58, pp.773-781, 2006.

C. K. Osborne, Steroid hormone receptors in breast cancer management, Breast Cancer Res. Treat, vol.51, pp.227-238, 1998.

D. L. Wickerham, J. P. Costantino, V. G. Vogel, W. M. Cronin, R. S. Cecchini et al., The use of tamoxifen and raloxifene for the prevention of breast cancer, Recent Results Cancer Res. Fortschritte Krebsforsch, Progres Dans Rech. Sur Cancer, vol.181, pp.113-119, 2009.

V. C. Jordan and B. W. O'malley, Selective estrogen-receptor modulators and antihormonal resistance in breast cancer, J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol, vol.25, pp.5815-5824, 2007.

R. Clarke, J. J. Tyson, and J. M. Dixon, Endocrine resistance in brea st cancer--An overview and update, Mol. Cell. Endocrinol, vol.418, issue.3, pp.220-234, 2015.

E. A. Musgrove and R. L. Sutherland, Biological determinants of endocrine resistance in breast cancer, Nat. Rev. Cancer, vol.9, pp.631-643, 2009.

V. N. Gajulapalli, V. L. Malisetty, S. K. Chitta, and B. Manavathi, Oestrogen receptor negativity in breast cancer: a cause or consequence?, Biosci. Rep, vol.36, 2016.

J. S. Carroll, C. A. Meyer, J. Song, W. Li, T. R. Geistlinger et al., Genome -wide analysis of estrogen receptor binding sites, Nat. Genet, vol.38, pp.1289-1297, 2006.

W. Welboren, M. A. Van-driel, E. M. Janssen-megens, S. J. Van-heeringen, F. C. Sweep et al., ChIP-Seq of ERalpha and RNA polymerase II defines gene s differentially responding to ligands, EMBO J, vol.28, pp.1418-1428, 2009.

C. S. Ross-innes, R. Stark, A. E. Teschendorff, K. A. Holmes, H. R. Ali et al., Differential oestrogen receptor binding is associated with clinical outcome in breast cancer, Nature, vol.481, pp.389-393, 2012.

K. M. Jozwik and J. S. Carroll, Pioneer factors in hormone-dependent cancers, Nat. Rev. Cancer, vol.12, pp.381-385, 2012.

S. Badve, D. J. Dabbs, S. J. Schnitt, F. L. Baehner, T. Decker et al., Basal-like and triple-negative breast cancers: a critical review with an emphasis on the implications for pathologists and oncologists, Mod. Pathol. Off. J. U. S. Can. Acad. Pathol. Inc, vol.24, pp.157-167, 2011.

E. Lim, F. Vaillant, D. Wu, N. C. Forrest, B. Pal et al.,

M. A. French, G. K. Brown, J. E. Smyth, G. J. Visvader, and . Lindeman, Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers, Nat. Med, vol.15, pp.907-913, 2009.

G. Molyneux, F. C. Geyer, F. Magnay, A. Mccarthy, H. Kendrick et al., BRCA1 basal-like breast cancers originate from luminal epithelial progenitors and not from basal stem cells, Cell Stem Cell, vol.7, pp.403-417, 2010.

T. Kuukasjärvi, J. Kononen, H. Helin, K. Holli, and J. Isola, Loss of estrogen receptor in recurrent breast cancer is associated with poor response to endocrine therapy, J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol, vol.14, pp.2584-2589, 1996.

F. Miralles, G. Posern, A. Zaromytidou, and R. Treisman, Actin dynamics control SRF activity by regulation of its coactivator MAL, Cell, vol.113, pp.329-342, 2003.

G. C. Pipes, E. E. Creemers, and E. N. Olson, The myocardin family of transcriptional coactivators: versatile regulators of cell growth, migration, and myogenesis, Genes Dev, vol.20, pp.1545-1556, 2006.

S. Li, S. Chang, X. Qi, J. A. Richardson, and E. N. Olson, Requirement of a myocardin -related transcription factor for development of mammary myoepithelial cells, Mol. Cell. Biol, vol.26, pp.5797-5808, 2006.

Y. Sun, K. Boyd, W. Xu, J. Ma, C. W. Jackson et al., Acute myeloid leukemia -associated Mkl1 (Mrtfa) is a key regulator of mammary gland function, Mol. Cell. Biol, vol.26, pp.5809-5826, 2006.

S. Medjkane, C. Perez-sanchez, C. Gaggioli, E. Sahai, and R. Treisman, Myocardin-related transcription factors and SRF are required for cytoskeletal dynamics and experimental metastasis, Nat. Cell Biol, vol.11, pp.257-268, 2009.

K. S. Purrington, S. Slager, D. Eccles, D. Yannoukakos, P. A. Fasching et al., Genome-wide association study identifies 25 known breast cancer susceptibility loci as risk factors for triple-negative breast cancer, vol.35, pp.1012-1019, 2014.

I. Gurbuz, J. Ferralli, T. Roloff, R. Chiquet-ehrismann, and M. B. Asparuhova, SAP domaindependent Mkl1 signaling stimulates proliferation and cell migration by induction of a distinct gene set indicative of poor prognosis in breast cancer patients, Mol. Cancer, vol.13, p.22, 2014.

S. Lindström, D. J. Thompson, A. D. Paterson, J. Li, G. L. Gierach et al., Genome-wide association study identifies multiple loci associated with both mammographic density and breast cancer risk, Nat. Commun, vol.5, p.5303, 2014.

G. Kerdivel, A. Boudot, D. Habauzit, F. Perceva-ult, F. Demay et al., Activation of the MKL1/actin signaling pathway induces hormonal escape in estrogen -responsive breast cancer cell lines, Mol. Cell. Endocrinol, vol.390, pp.34-44, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01061363

G. Flouriot, G. Huet, F. Demay, F. Pakdel, N. Boujrad et al., The actin/MKL1 signalling pathway influences cell growth and gene expression through large -scale chromatin reorganization and histone post-translational modifications, Biochem. J, vol.461, pp.257-268, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01063933

G. Huet, Y. Mérot, F. Percevault, C. Tiffoche, J. Arnal et al., Repression of the estrogen receptor-alpha transcriptional activity by the Rho/megakaryoblastic leukemia 1 signaling pathway, J. Biol. Chem, vol.284, pp.33729-33739, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00426655

G. Flouriot, C. Vaillant, G. Salbert, C. Pelissero, J. M. Guiraud et al., Monolayer and aggregate cultures of rainbow trout hepatocytes: long-term and stable liver-specific expression in aggregates, J. Cell Sci, vol.105, issue.2, pp.407-416, 1993.

R. C. Gentleman, V. J. Carey, D. M. Bates, B. Bolstad, M. Dettling et al., Bioconductor: open software development for computational biology and bioinformatics, vol.5, 2004.

J. M. Wettenhall and G. K. Smyth, limmaGUI: a graphical user interface for linear modeling of microarray data, Bioinforma. Oxf. Engl, vol.20, pp.3705-3706, 2004.

G. Yu, L. Wang, Y. Han, and Q. , He, clusterProfiler: an R package for comparing biological themes among gene clusters, Omics J. Integr. Biol, vol.16, pp.284-287, 2012.

J. Quintin, C. Le-péron, G. Palierne, M. Bizot, S. Cunha et al., Dynamic estrogen receptor interactomes control estrogen-responsive trefoil Factor (TFF) locus cell-specific activities, Mol. Cell. Biol, vol.34, pp.2418-2436, 2014.

G. Palierne, A. Fabre, R. Solinhac, C. Le-péron, S. Avner et al., Changes in Gene Expression and Estrogen Receptor Cistrome in Mouse Liver Upon Acute E2 Treatment, Mol. Endocrinol. Baltim. Md, vol.30, pp.709-732, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01357623

B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg, Ultrafast and memory-efficient alignment of short DNA sequences to the human genome, Genome Biol, vol.10, 2009.

H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan et al., Genome Project Data Processing Subgroup, The Se quence Alignment/Map format and SAMtools, Bioinforma. Oxf. Engl, vol.25, pp.2078-2079, 1000.

J. Feng, T. Liu, B. Qin, Y. Zhang, and X. S. Liu, Identifying ChIP -seq enrichment using MACS, Nat. Protoc, vol.7, pp.1728-1740, 2012.

T. Liu, J. A. Ortiz, L. Taing, C. A. Meyer, B. Lee et al., Cistrome: an integrative platform for transcriptional regulation studies, Genome Biol, vol.12, 2011.

T. Barrett, D. B. Troup, S. E. Wilhite, P. Ledoux, D. Rudnev et al., archive for high-throughput functional genomic data, Nucleic Acids Res, vol.37, pp.885-890, 2009.

S. Lamouille, J. Xu, and R. Derynck, Molecular mechanisms of epithelial -mesenchymal transition, Nat. Rev. Mol. Cell Biol, vol.15, pp.178-196, 2014.

S. C. Stadler and C. D. Allis, Linking epithelial-to-mesenchymal-transition and epigenetic modifications, Semin. Cancer Biol, vol.22, pp.404-410, 2012.

W. L. Tam and R. A. Weinberg, The epigenetics of epithelial -mesenchymal plasticity in cancer, Nat. Med, vol.19, pp.1438-1449, 2013.

T. Sorlie, R. Tibshirani, J. Parker, T. Hastie, J. S. Marron et al., Repeated observation of breast tumor subtypes in independent gene expression data sets, Proc. Natl. Acad. Sci. U. S. A, vol.100, pp.8418-8423, 2003.

G. M. Bernardo, G. Bebek, C. L. Ginther, S. T. Sizemore, K. L. Lozada et al., FOXA1 represses the molecular phenotype of basal breast cancer cells, Oncogene, vol.32, pp.554-563, 2013.

P. S. Ray, J. Wang, Y. Qu, M. Sim, J. Shamonki et al., FOXC1 is a potential prognostic biomarker with functional significance in basal -like breast cancer, Cancer Res, vol.70, pp.3870-3876, 2010.

J. Frasor, J. M. Danes, B. Komm, K. C. Chang, C. R. Lyttle et al., Profiling of estrogen up-and down-regulated gene expression in human breast cancer cells: insights into gene networks and pathways underlying estrogenic control of proliferation and cell phenotype, Endocrinology, vol.144, pp.4562-4574, 2003.

K. Ovaska, F. Matarese, K. Grote, I. Charapitsa, A. Cervera et al., Integrative analysis of deep sequencing data identifies estrogen receptor early response genes and links ATAD3B to poor survival in breast cancer, PLoS Comput. Biol, vol.9, 2013.

M. J. Fullwood, M. H. Liu, Y. F. Pan, J. Liu, H. Xu et al., An oestrogen-receptor-alpha-bound human chromatin interactome, Nature, vol.462, pp.58-64, 2009.

C. Y. Mclean, D. Bristor, M. Hiller, S. L. Clarke, B. T. Schaar et al., GREAT improves functional interpretation of cis-regulatory regions, Nat. Biotechnol, vol.28, pp.495-501, 2010.

E. Calo and J. Wysocka, Modification of enhancer chromatin: what, how, and why?, Mol. Cell, vol.49, pp.825-837, 2013.

G. M. Sizemore, S. T. Sizemore, B. Pal, C. N. Booth, D. D. Seachrist et al., FOXC1 is enriched in the mammary luminal progenitor population, but is not necessary for mouse mammary ductal morphogenesis, Biol. Reprod, vol.89, p.10, 2013.

Y. Yu-rice, Y. Jin, B. Han, Y. Qu, J. Johnson et al., FOXC1 is involved in ER? silencing by counteracting GATA3 binding and is implicated in endocrine resistance, Oncogene, vol.35, pp.5400-5411, 2016.

D. Tkocz, N. T. Crawford, N. E. Buckley, F. B. Berry, R. D. Kennedy et al., BRCA1 and GATA3 corepress FOXC1 to inhibit the pathogenesis of basal -like breast cancers, Oncogene, vol.31, pp.3667-3678, 2012.

S. Santagata, A. Thakkar, A. Ergonul, B. Wang, T. Woo et al., Taxonomy of breast cancer based on norm al cell phenotype predicts outcome, J. Clin. Invest, vol.124, pp.859-870, 2014.

J. Mcbryan, J. Howlin, S. Napoletano, and F. Martin, Amphiregulin: role in mammary gland development and breast cancer, J. Mammary Gland Biol. Neopl asia, vol.13, pp.159-169, 2008.

K. E. Luker and G. D. Luker, Functions of CXCL12 and CXCR4 in breast cancer, Cancer Lett, vol.238, pp.30-41, 2006.

V. C. Jordan, R. Curpan, and P. Y. Maximov, Estrogen receptor mutations found in breast cancer metastases integrated with the molecular pharmacology of selective ER modulators, J. Natl. Cancer Inst, vol.107, p.75, 2015.

. Fig and . S1, Impacts of the nuclear localization of MKL1. Fig. S2, Expression of MKL1?N200 protein in MCF7 cells induces changes in the expression of luminal-, basal-like-and HE R2-breast cancer markers