K. Y. Kwan, N. Sestan, and E. S. Anton, Transcriptional co-regulation of neuronal migration and laminar identity in the neocortex, Development, vol.139, pp.1535-1546, 2012.

L. Pilaz and D. Silver, Post-transcriptional regulation in corticogenesis: how RNA-binding proteins help build the brain, Wiley Interdiscip. Rev. RNA, vol.6, pp.501-515, 2015.

T. Popovitchenko and M. R. Rasin, Transcriptional and post-transcriptional mechanisms of the development of neocortical lamination, Front. Neuroanat, vol.11, p.102, 2017.

J. Breunig, T. Haydar, and P. Rakic, Neural stem cells: historical perspective and future prospects, Neuron, vol.70, pp.614-625, 2011.

E. Deboer, M. Kraushar, R. Hart, and M. Rasin, Post-transcriptional regulatory elements and spatiotemporal specification of neocortical stem cells and projection neurons, Neuroscience, vol.248, pp.499-528, 2013.

S. Lodato and P. Arlotta, Generating neuronal diversity in the mammalian cerebral cortex, Annu. Rev. Cell Dev. Biol, vol.31, pp.699-720, 2015.

A. Lennox, H. Mao, and D. Silver, RNA on the brain: emerging layers of posttranscriptional regulation in cerebral cortex development, Wiley Interdiscip. Rev. Dev. Biol, vol.7, p.290, 2018.

X. Zhang, Cell-type-specific alternative splicing governs cell fate in the developing cerebral cortex, Cell, vol.166, pp.1147-1162, 2016.

E. Deboer, Prenatal deletion of the RNA-binding protein HuD Disrupts postnatal cortical circuit maturation and behavior, J. Neurosci, vol.34, pp.3674-3686, 2014.

M. L. Kraushar, Temporally defined neocortical translation and polysome assembly are determined by the RNA-binding protein Hu antigen R, Proc. Natl Acad. Sci. USA, vol.111, pp.3815-3824, 2014.

M. L. Kraushar, Thalamic WNT3 secretion spatiotemporally regulates the neocortical ribosome signature and mRNA translation to specify neocortical cell subtypes, J. Neurosci, vol.35, pp.10911-10926, 2015.

G. Yang, C. Smibert, D. Kaplan, and F. Miller, An eIF4E1/4E-T complex determines the genesis of neurons from precursors by translationally repressing a proneurogenic transcription program, Neuron, vol.84, pp.723-739, 2014.

T. Popovitchenko, The RNA binding protein HuR determines the differential translation of autism-associated FoxP subfamily members in the developing neocortex, Sci. Rep, vol.6, p.28998, 2016.

, NATURE COMMUNICATIONS |, vol.11, p.1674, 2020.

K. F. Chau, Downregulation of ribosome biogenesis during early forebrain development, Elife, vol.7, p.36998, 2018.

S. Zahr, Translational repression complex in developing mammalian neural stem cells that regulates neuronal specification, Neuron, vol.97, pp.520-537, 2018.

R. Jackson, C. Hellen, and T. Pestova, The mechanism of eukaryotic translation initiation and principles of its regulation, Nat. Rev. Mol. Cell Biol, vol.11, pp.113-127, 2010.

A. G. Hinnebusch, I. P. Ivanov, and N. Sonenberg, Translational control by 5?-untranslated regions of eukaryotic mRNAs, Science, vol.352, pp.1413-1416, 2016.

G. Tushev, Alternative 3?UTRs modify the localization, regulatory potential, stability, and plasticity of mRNAs in neuronal compartments, Neuron, vol.98, pp.495-511, 2018.

L. Simone and J. Keene, Mechanisms coordinating ELAV/Hu mRNA regulons, Curr. Opin. Genet. Dev, vol.23, pp.35-43, 2013.

A. S. Gardiner, J. L. Twiss, and N. I. Perrone-bizzozero, Competing interactions of RNA-binding proteins, microRNAs, and their targets control neuronal development and function, Biomolecules, vol.5, pp.2903-2918, 2015.

K. Theil, M. Herzog, and N. Rajewsky, Post-transcriptional regulation by 3? UTRs can be masked by regulatory elements in 5? UTRs, Cell Rep, vol.22, pp.3217-3226, 2018.

A. Ayoub, Transcriptional programs in transient embryonic zones of the cerebral cortex defined by high-resolution mRNA sequencing, Proc. Natl Acad. Sci. USA, vol.108, pp.14950-14955, 2011.

L. Liu, Competition between RNA-binding proteins CELF1 and HuR modulates MYC translation and intestinal epithelium renewal, Mol. Biol. Cell, vol.26, pp.1797-1810, 2015.

N. Timchenko, A. Lu, X. Welm, and L. Timchenko, CUG repeat binding protein (CUGBP1) interacts with the 5? region of C/EBP mRNA and regulates translation of C/EBP isoforms, Nucleic Acids Res, vol.27, pp.4517-4525, 1999.

J. Lee and T. Cooper, Pathogenic mechanisms of myotonic dystrophy, Biochem. Soc. Trans, vol.37, pp.1281-1286, 2009.

J. Reimand, Profiler-a web server for functional interpretation of gene lists (2016 update), Nucleic Acids Res, vol.44, pp.83-89, 2016.

M. L. Kraushar, T. Popovitchenko, N. L. Volk, and M. R. Rasin, The frontier of RNA metamorphosis and ribosome signature in neocortical development, Int. J. Dev. Neurosci, vol.55, pp.131-139, 2016.

W. Akamatsu, The RNA-binding protein HuD regulates neuronal cell identity and maturation, Proc. Natl. Acad. Sci. USA, vol.102, pp.4625-4630, 2005.

F. Wang, Positive feedback between RNA-binding protein HuD and transcription factor SATB1 promotes neurogenesis, Proc. Natl Acad. Sci. USA, vol.112, pp.4995-5004, 2015.

J. L. Mignone, V. Kukekov, A. Chiang, D. Steindler, and G. Enikolopov, Neural stem and progenitor cells in nestin-GFP transgenic mice, J. Comp. Neurol, vol.469, pp.311-324, 2004.

J. Mignone, N. Peunova, and G. Enikolopov, Nestin-based reporter transgenic mouse lines, Methods Mol. Biol, vol.1453, pp.7-14, 2016.

S. Arnold, J. Sugnaseelan, M. Groszer, S. Srinivas, and E. Robertson, Generation and analysis of a mouse line harboring GFP in the Eomes/Tbr2 locus, Genesis, vol.47, pp.775-781, 2009.

S. J. Arnold, The T-box transcription factor Eomes/Tbr2 regulates neurogenesis in the cortical subventricular zone, Genes Dev, vol.22, pp.2479-2484, 2008.

K. Tsuda, Structural basis for the sequence-specific RNA-recognition mechanism of human CUG-BP1 RRM3, Nucleic Acids Res, vol.37, pp.5151-5166, 2009.

M. Teplova, J. Song, H. Y. Gaw, A. Teplov, and D. J. Patel, Structural insights into RNA recognition by the alternate-splicing regulator CUG-binding protein 1, Structure, vol.18, pp.1364-1377, 2010.

C. Kress, C. Gautier-courteille, H. Osborne, C. Babinet, and L. Paillard, Inactivation of CUG-BP1/CELF1 causes growth, viability, and spermatogenesis defects in mice, Mol. Cell. Biol, vol.27, pp.1146-1157, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00292920

M. Cibois, G. Boulanger, Y. Audic, L. Paillard, and C. Gautier-courteille, Inactivation of the Celf1 gene that encodes an RNA-binding protein delays the first wave of spermatogenesis in mice, PLoS ONE, vol.7, p.46337, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00869961

B. C. Carlyle, A multiregional proteomic survey of the postnatal human brain, Nat. Neurosci, vol.20, pp.1787-1795, 2017.

R. Xu, OLIG2 drives abnormal neurodevelopmental phenotypes in human iPSC-based organoid and chimeric mouse models of down syndrome, Cell Stem Cell, vol.24, pp.908-926, 2019.

C. Rouaux and P. Arlotta, Direct lineage reprogramming of post-mitotic callosal neurons into corticofugal neurons in vivo, Nat. Cell Biol, vol.15, pp.214-221, 2013.

L. Fenlon and L. Richards, Contralateral targeting of the corpus callosum in normal and pathological brain function, Trends Neurosci, vol.38, pp.264-272, 2015.

A. A. Pollen, Molecular identity of human outer radial glia during cortical development, Cell, vol.163, pp.55-67, 2015.

T. J. Nowakowski, Spatiotemporal gene expression trajectories reveal developmental hierarchies of the human cortex, Science, vol.358, pp.1318-1323, 2017.

I. Zunic-isasegi, Interactive histogenesis of axonal strata and proliferative zones in the human fetal cerebral wall, Brain Struct. Funct, vol.223, pp.3919-3943, 2018.

M. Juda?, The Zagreb collection of human brains: a unique, versatile, but underexploited resource for the neuroscience community, Ann. N. Y. Acad. Sci, vol.1225, pp.105-130, 2011.

M. Lek, Exome Aggregation Consortium. Analysis of protein-coding genetic variation in 60,706 humans, Nature, vol.536, pp.285-291, 2016.

F. K. Satterstrom, Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism, Cell, vol.180, pp.568-584, 2020.

K. Y. Kwan, Species-dependent posttranscriptional regulation of NOS1 by FMRP in the developing cerebral cortex, Cell, vol.149, pp.899-911, 2012.

J. Darnell, FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism, Cell, vol.146, pp.247-261, 2011.

A. Fukao, The ELAV protein HuD stimulates cap-dependent translation in a poly(A)-and eIF4A-dependent manner, Mol. Cell, vol.36, pp.1007-1017, 2009.

S. Hayashi, M. Yano, M. Igarashi, H. J. Okano, and H. Okano, Alternative role of HuD splicing variants in neuronal differentiation, J. Neurosci. Res, vol.93, pp.399-409, 2014.

T. Ghosh, MicroRNAs establish robustness and adaptability of a critical gene network to regulate progenitor fate decisions during cortical neurogenesis, Cell Rep, vol.7, pp.1779-1788, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01311678

S. Yokoi, 3?UTR length-dependent control of SynGAP isoform ?2 mRNA by FUS and ELAV-like proteins promotes dendritic spine maturation and cognitive function, Cell Rep, vol.20, pp.3071-3084, 2017.

K. Zybura-broda, HuR (Elavl1) and HuB (Elavl2) stabilize matrix metalloproteinase-9 mRNA during seizure-induced Mmp-9 expression in neurons, Front. Neurosci, vol.12, pp.1-15, 2018.

J. Darnell and E. Klann, The translation of translational control by FMRP: therapeutic targets for FXS, Nat. Neurosci, vol.16, pp.1530-1536, 2013.

J. Hallmayer, Molecular analysis and test of linkage between the FMR-1 gene and infantile autism in multiplex families, Am. J. Hum. Genet, vol.55, pp.951-959, 1994.

S. De-rubeis, CYFIP1 coordinates mRNA translation and cytoskeleton remodeling to ensure proper dendritic spine formation, Neuron, vol.79, pp.1169-1182, 2013.

S. De-rubeis, Synaptic, transcriptional and chromatin genes disrupted in autism, Nature, vol.515, pp.209-215, 2014.

T. Dasgupta and A. N. Ladd, The importance of CELF control: molecular and biological roles of the CUG-BP, Elav-like family of RNA-binding proteins, Wiley Interdiscip. Rev. RNA, vol.3, pp.104-121, 2012.

J. D. Dougherty, The disruption of Celf6, a gene identified by translational profiling of serotonergic neurons, results in autism-related behaviors, J. Neurosci, vol.33, pp.2732-2753, 2013.

A. Parras, Autism-like phenotype and risk gene mRNA deadenylation by CPEB4 mis-splicing, Nature, vol.560, pp.441-446, 2018.

D. H. Geschwind and P. Levitt, Autism spectrum disorders: developmental disconnection syndromes, Curr. Opin. Neurobiol, vol.17, pp.103-111, 2007.

M. W. State and P. Levitt, The conundrums of understanding genetic risks for autism spectrum disorders, Nat. Neurosci, vol.14, pp.1499-1506, 2011.

N. Sestan and M. W. State, Lost in translation: traversing the complex path from genomics to therapeutics in autism spectrum disorder, Neuron, vol.100, pp.406-423, 2018.

J. Aitchison, The Statistical Analysis of Compositional Data Monographs on, Statistics and Applied Probability, 1986.

C. Trapnell, Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks, Nat. Protoc, vol.7, pp.562-578, 2012.

S. Durinck, P. Spellman, E. Birney, and W. Huber, Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt, Nat. Protoc, vol.4, pp.1184-1191, 2009.

S. Heinz, Simple Combinations of Lineage-Determining Transcription Factors Prime cis-Regulatory Elements Required for Macrophage and B Cell Identities, Mol. Cell, vol.38, pp.576-589, 2010.

S. Gerstberger, M. Hafner, and T. Tuschl, A census of human RNA-binding proteins, Nat. Rev. Genet, vol.15, pp.829-845, 2014.

S. W. Park, M. I. Kuroda, and Y. Park, Regulation of histone H4 Lys16 acetylation by predicted alternative secondary structures in roX noncoding RNAs, Mol Cell Biol, vol.28, pp.4952-4962, 2008.

J. Schindelin, Fiji: an open-source platform for biological-image analysis, Nat. Methods, vol.9, pp.676-682, 2012.

S. Lebedeva, Transcriptome-wide Analysis of Regulatory Interactions of the RNA-Binding Protein HuR, Mol. Cell, vol.43, pp.340-352, 2011.

C. Scheckel, Regulatory Consequences of Neuronal ELAV-like Protein Binding to Coding and Non-Coding RNAs in Human Brain, Elife, vol.5, p.10421, 2016.

J. L. Wagnon, CELF4 Regulates Translation and Local Abundance of a Vast Set of mRNAs, Including Genes Associated With Regulation of Synaptic Function, PLoS Genet, vol.8, p.1003067, 2012.

L. Tonquèze, O. Gschloessl, B. Legagneux, V. Paillard, L. Audic et al., Identification of CELF1 RNA targets by CLIP-seq in human HeLa cells, Genomics Data, vol.8, pp.97-103, 2016.