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Highlights 

 Children at 7 years exposed to chlordecone in Guadeloupe were enrolled 

 The association between pre- and postnatal chlordecone exposure and visual 

contrast sensitivity was examined 

 Prenatal chlordecone exposure was associated with lower contrast sensitivity 

 Postnatal chlordecone exposure was associated with lower contrast sensitivity but 

only in boys 
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Recent evidence suggests that prenatal exposure to chlordecone, a persistent 

organochlorine pesticide that was used intensively in the French West Indies, affects 

infant neurodevelopment. The aim of the present study was to evaluate the association 

between prenatal and postnatal chlordecone exposures on visual contrast sensitivity in 

285 children aged from 7.1 to 8 years old (mean age = 7.68 ±0.21 years; sex ratio = 54% 

girls) in a Guadeloupean prospective birth cohort (TIMOUN). The Freiburg 

Visual Acuity and Contrast Test (FrAcT) was used to assess visual contrast sensitivity. 

Chlordecone concentrations were measured in blood samples at birth (cord blood) and in 

children at testing time to estimate pre- and postnatal exposure, respectively. Exposures 

were categorized into three groups and were also log-transformed and considered as 

continuous variables. Multiple linear regression models were performed on all children 

taking into account various potential confounders, including maternal characteristics 

(age, education, intellectual functioning, alcohol and tobacco use during pregnancy). 

Potential moderation effect of sex was also examined. Results showed that higher cord 

plasma chlordecone levels were associated with lower contrast sensitivity. Although child 

chlordecone levels was not associated with the FrAcT, sex-specific stratified analyses 

revealed significant associations in boys. Associations between postnatal exposure and 

FrACT scores in girls were null. This study indicates that exposure to chlordecone in 

utero and during childhood may impair visual contrast sensitivity at school age, 

particularly in boys.  

  

1. Introduction 
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Organochlorine (OC) compounds are persistent organic pollutants that were massively 

used in agriculture and residential settings. Although mostly banned by the late 1970s, 

humans are still exposed to these industrially synthesized molecules because of their high 

stability and resistance to environmental degradation. The impact of OC exposure on 

human health has been studied in particular in the context of metabolic diseases (Lee et 

al., 2014), reproductive health (Vested et al., 2014) and child development (Vrijheid, 

Casas, Gascon, Valvi, & Nieuwenhuijsen, 2016). Although there is strong evidence from 

longitudinal birth cohorts that prenatal exposure to OC pesticides is associated with 

impairments of motor and cognitive development (Eskenazi et al., 2006; Puertas et al., 

2010; Ribas-Fito et al., 2003; Ribas-Fito et al., 2006; Sagiv et al., 2010; Torres-Sanchez 

et al., 2007), very few studies have investigated the impact on sensory functions (Cartier 

et al., 2014; Riva et al., 2004). Yet, it is very important to understand  the neurological 

burden resulting from environmental contaminant exposure, especially since there are 

cases in the literature showing no adverse associations with cognitive functions but with 

alterations of sensory functions, and vice-versa. For instance, in a study that examined the 

consequences stemming from prenatal exposure to organophosphate insecticides, Cartier 

and colleagues found no association with altered cognitive function in 6-year-old children 

from the PELAGIE mother-child cohort in France (Cartier et al., 2016), but found 

significantly decreased visual contrast sensitivity function in those children (boys only) 

(Cartier et al., 2018). 

 

Chlordecone, an OC pesticide, was extensively used until 1993 in the French West Indies 

to control banana root borers. This molecule is highly stable and resistant to 
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environmental degradation and therefore contaminates soils, water sources and crops for 

several decades (Cabidoche et al., 2009; Coat et al., 2011). As a result, populations of the 

French West Indies, including pregnant women, are exposed to chlordecone through the 

consumption of contaminated food and of drinking water (Dubuisson et al., 2007). Since 

chlordecone is known to cross the placental barrier (Kavlock, Chernoff, Rogers, & 

Whitehouse, 1980), in utero exposure from maternal intake might result in a window of 

higher susceptibility for the offspring, which can be harmful given the well-known 

sensitivity of the fetus to toxic disturbances (Grandjean & Landrigan, 2006). In addition 

to prenatal exposure, postnatal exposure can occur via breastfeeding and diet. In fact, in 

the French West Indies, food-related exposure to chlordecone above the reference dose 

(i.e., the “no effect threshold” dose) is more common in 3-to-5-year-old children than in 

adults (Godard & Guldner, 2011).  

 

The toxicity of chlordecone was first recognized decades ago following an accidental 

excessive exposure in workers in a chlordecone-producing factory located in Hopewell, 

United States (Cannon et al., 1978; Taylor, Selhorst, Houff, & Martinez, 1978). In 

addition to signs of toxicity on the skin, in the liver and in the endocrine system, 

neurological impairments were also observed, such as tremors, enhanced startle 

responses, staggering speech, memory loss, and visual disturbances. Visual symptoms 

were characterized by difficulties in maintaining stable fixation, including nystagmus, 

and blurred vision, but visual acuity remained within the normal range. Of note, some of 

the workers complained of neurological symptoms several years after cessation of 

exposure (Taylor, 1982). The mechanisms of action causing chlordecone neurotoxicity 
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involves alterations in cell metabolism, namely in the enzymatic activity of the ATPases 

and calcium homeostasis (End, Carchman, & Dewey, 1981; Komulainen & Bondy, 

1987), as well as in several neurotransmitter systems (Desaiah, 1985), altering various 

functions of the central nervous system. Furthermore, chlordecone possesses well-defined 

estrogenic activity in vivo and in vitro  (Hammond, Katzenellenbogen, Krauthammer, & 

McConnell, 1979; Kuiper et al., 1998; Lemaire, Mnif, Mauvais, Balaguer, & Rahmani, 

2006). 

 

In the early 2000s, two epidemiological studies reported cognitive and motor 

impairments following chlordecone exposure in Guadeloupean infants from the 

prospective birth cohort TIMOUN (Boucher et al., 2013; Dallaire et al., 2012). The 

authors found an association between pre- and postnatal exposure to chlordecone and 

short-term memory at 7 months of age, as well as fine motor deficits at 18 months of age. 

These results are consistent with reports in Hopewell workers of memory and motor 

impairments. In the study of Dallaire et al. (2012), visual acuity, i.e., the ability to discern 

fine details, was also measured using the Teller Acuity Cards and no association was 

detected between infant visual acuity and chlordecone concentrations, for prenatal nor 

postnatal exposure. Of note, visual acuity was also found to be intact in the chlordecone 

(Kepone) poisoning workers, where blood levels were about 1000 times higher than those 

measured in Guadeloupe (Cannon et al., 1978). These results suggest a potential lack of 

sensitivity of acuity tests in detecting chlordecone-related effects on visual functions. 
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The present study aimed to evaluate the impact of chlordecone exposure on visual 

functions in school-aged children from the TIMOUN birth cohort by assessing contrast 

sensitivity. In contrast to visual acuity, which measures the ability to recognize smaller 

and smaller stimuli at maximal contrast (e.g., a black letter on a white background), 

contrast sensitivity measures the ability to see a stimulus of decreasing contrast or light 

intensity. Contrast sensitivity measures have been found to detect subtle changes in post-

retinal processing, which may not be revealed by visual acuity assessments, as the latter 

is easily disrupted by refraction errors in the eye. Thus, contrast sensitivity testing is 

thought to provide a more comprehensive and sensitive measure of visual function (e.g., 

Fillion et al., 2013; Frenette, Mergler, & Bowler, 1991; Till, Westall, Koren, Nulman, & 

Rovet, 2005). 

 

2. Materiel and methods 

 

2.1. Participants 

The TIMOUN birth cohort was initiated to evaluate the potential impact of prenatal 

exposure to chlordecone on child development. Between November 2004 and December 

2007, 1068 pregnant women were recruited during their third-trimester prenatal visit at 

public hospitals and antenatal care dispensaries in Guadeloupe. Questionnaires were 

administered at inclusion to document social, demographic, occupational, and medical 

family characteristics, as well as lifestyle habits. The maternal characteristics known as 

potential confounders were used in the present study for statistical control  (see section 

2.4 below). On the day of delivery, information about dietary habits and alcohol 
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consumption during pregnancy were collected and a cord blood sample was obtained to 

document prenatal exposure to chlordecone and other environmental contaminants. 

 

At 7 years of age, 1033 liveborn singleton children were invited to participate in a 

neuropsychological follow-up study at the hospital, which included an evaluation of their 

visual functions and the collection of a blood sample. A maternal interview documented 

major events and behavior during childhood, and the maternal nonverbal intellectual 

functioning was assessed with the Raven’s Progressive Matrices (Raven, Raven, & Court, 

1998). In total, 444 families could not be contacted or refused to participate. Of the 589 

remaining children, all completed a visual function evaluation. Participants were only 

included in the study analysis if chlordecone concentrations at birth (cord blood) and at 

the testing time (child blood) were available (n=293). The exclusion criteria for the 

present analysis were the following: birth before 34 weeks of gestation (n=5), 5-minute 

Apgar score <7 (n=0), genetic or neurological disorders (n=2; epilepsy, traumatic brain 

injury), and/or medication intake at testing time (n=1, Ritalin). After applying all 

exclusion criteria,  the final sample amounted to 285 children. Additional children were 

excluded because of technical problems (n=1), lack of collaboration (n=3) or due to 

forgetting their glasses at testing time (n=5). All subjects gave informed consent before 

participating in this study. The appropriate French ethics committees approved all study 

procedures, including the informed consent forms.  

 

2.2. Measurements of chlordecone and other contaminants  
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Blood samples at birth (cord blood) and at the 7-year visit, were collected in EDTA tubes 

to document prenatal and childhood exposure to chlordecone respectively, and to other 

environmental contaminants. Plasma samples were stored at -30 °C in Polypropylene 

Nunc® tubes following centrifugation. Chlordecone, polychlorinated biphenyl congener 

153 (PCB-153), dichlorodiphenyl dichloroethene (DDE) and lipids were measured in 

plasma. Total mercury (Hg) and lead (Pb) were quantified in whole blood. Determination 

of chlordecone and PCB-153 concentrations were done by the Center for Analytical and 

Research Technology at Liege University (Belgium). Contaminant concentrations were 

analyzed by high-resolution gas chromatography (Thermo Quest Trace 2000). 

Preparation of samples and quantification method were previously described (Multigner 

et al., 2010). The limit of detection (LOD) was 0.06 μg/L for chlordecone in cord blood, 

0.02 for child chlordecone, and 0.05 μg/L for PCB-153 and DDE. Total cholesterol and 

triglycerides in plasma were determined by standard enzymatic procedures (DiaSys 

Diagnostoc Systems GmbH; Holzheim, Germany) and total lipid concentrations were 

calculated as described by Bernert et al. (2007). Blood Hg and Pb concentrations were 

measured by inductively coupled plasma mass spectrometry (ICP-MS) at the laboratory 

of the “Centre de toxicologie du Québec”. For Hg determination, blood samples were 

diluted 20-fold in a solution containing ammonium hydroxide before analysis. The LOD 

for Hg and Pb were 0.4 μg/L and 2 μg/L respectively, and each run of samples included a 

standard.  

 

2.3. Functional Acuity Contrast Test (FrACT)  
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Participants were seated at a distance of 2 meters from the computer screen (1024 x 768 

pixels). The assessment was conducted by a trained nurse, blind to the participant 

chlordecone exposure. Participants with prescription glasses were asked to wear them for 

the duration of the task. Visual acuity and contrast threshold were assessed using the 

FrACT. The FrACT is an 8-minutes computerized visual screening battery developed by 

Michael Bach (Bach, 1996), which has been validated in different populations and for 

different age groups, including preschool children (Dennis et al., 2004; Lai, Wang, & 

Hsu, 2011; Loumann Knudsen, 2003; Molloy et al., 2016; Schulze-Bonsel, Feltgen, 

Burau, Hansen, & Bach, 2006; Van den Boomen, de Graaff, de Jong, Kalkman, & 

Kemner, 2013). Auditory feedback was given on a trial-by-trial basis (high-frequency 

tones after correct responses, and low-frequency tones after incorrect responses) to 

enhance each participant’s comfort (Bach & Schafer, 2016). A short practice run (about 5 

trials) was administrated before testing to make sure that the task was well understood. 

First, the visual acuity test, which consists of a ring with a gap (“C” shape optotype), was 

administrated (Figure 1a). The testing duration was approximately 4 minutes. The 

optotype was presented randomly among four different positions for each trial. 

Participants were instructed to indicate the location of the gap by pressing on a 4-arrow 

keypad, i.e., up, down, right or left. Perceptual thresholds were obtained from an adaptive 

staircase procedure implemented into the program (Best-PEST algorithm). The size of the 

optotype was automatically adjusted across trials according to the participant’s 

performance (e.g., if the participant answered correctly, the stimulus size was reduced on 

the next trial). The acuity of each participant was calculated as a Snellen fraction score, 

so that higher scores indicated better performance. Second, contrast thresholds were 
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tested, i.e., the lowest contrast level at which the the location of the gap was correctly 

detected (Figure 1b). The testing duration was approximately 4 minutes. Contrast of the 

optotype (with a constant and large size, i.e. 50 arc minutes width of visual angle) 

changed automatically across trials according to the participant’s performance. Scores 

were then converted in contrast sensitivity (1/threshold), so that higher scores indicated 

better performance.  

 

Figure 1. Visual acuity (left) and contrast sensitivity (right) measured using the FrACT. 

For visual acuity, participants selected the arrow corresponding to the perceived 

orientation of Landolt-C varying in size (illustrated here by the right gap). For contrast 

sensitivity, participants selected the arrow corresponding to the perceived orientation of 

Landolt-C varying in contrast (illustrated here with an up gap). 

 

2.4. Potential covariates 

The following variables were considered as potential confounders: age (in years), child 

sex, child birth weight (in grams), breastfeeding (none, <3 months, 3-7 months,  >7-18 

months or >18 months), age of the mother at the time of birth (in years), maternal 

educational level (12th grade (bac) or  higher), tobacco smoking (yes/no), alcohol 
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drinking during pregnancy (at least one drink during the preceding week or one “binge 

drinking” session in the past three months reported on either one of the two 

questionnaires administered at enrolment and after delivery), and the Raven’s Progressive 

Matrices maternal score. Prenatal and/or childhood exposure to other contaminants as 

assessed by cord and child blood concentrations of PCB-153, DDE, Hg and Pb were also 

examined. 

 

2.5. Statistical analysis 

Cord and child chlordecone concentrations were categorized into three groups (<LOD, 

≥LOD - median, >median) and were also log-transformed and considered as continuous 

variables. All other exposure variables (PCB-153, DDE, Pb, and Hg blood 

concentrations) were log-transformed. When chlordecone and other contaminant 

concentrations were analyzed as continuous variables, we imputed values of blood 

concentrations below the LOD using the likelihood method (Jin, Hein, Deddens, & 

Hines, 2011), under the assumption that contaminant concentration is log-normally 

distributed. Children’s contrast sensitivity scores were also log-transformed.  

  

Multiple linear regressions were used to assess the associations between prenatal and 

childhood exposure to chlordecone and children’s FrACT scores. Age and sex of the 

child, as well as total blood lipid concentrations were systematically included in the 

models. Other covariates were included in the models if they were associated with both 

chlordecone exposure and FrACT scores at p ≤ 0.2 or if they were highly associated (p ≤ 

0.05) with FrACT scores alone. Models explored associations with prenatal exposure or 
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child exposure separately and with mutual adjustment. Since chlordecone is a compound 

with recognized hormonal activity and since previous sex-specific associations have been 

reported between chlordecone exposure and child growth (Costet et al., 2015), or 

neurodevelopment (Boucher et al., 2013), we examined the interaction term of sex by 

chlordecone exposure (continuous variable) in the regression models. A liberal statistical 

criterion (p < 0.2) of the interaction term was used to justify follow-up sex-specific 

stratified analysis. 

 

3. Results 

 

Descriptive characteristics of the participants are presented in Table 1. The proportion of 

girls in the sample was slightly higher than boys (54.4% and 45.6%, respectively). 

Children who needed wearing glasses (29.8%) were as many girls (30.3%) as boys 

(29.2%). Mothers’ ages at the time of delivery ranged from 15.1 to 45.1 years old, and 

half of them (49.5%) had an education level of 12th grade (bac) or higher. Alcohol 

drinking (yes/no) documented twice during pregnancy was reported by 2.5% of the 

women (at enrolment and after delivery), and only 2.8% reported smoking at the 

beginning of pregnancy. The average gestation age was 38.5 weeks (Median = 39 weeks) 

with a range of 34 to 41 weeks. Finally, the majority of participating children (85.3%) 

were breastfed. Median chlordecone concentrations among detected values were 0.3 µg/L 

in cord plasma and 0.08 µg/L in child blood samples. Prenatal and postnatal exposures 

were found to be poorly correlated (r = 0.139, p = .021). As for the FrACT visual 

assessments scores, the vast majority of children (91%) had visual acuity within the 
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normal range, i.e., a Snellen fraction ratio of at least 0.8 (i.e., 20/25 or better), with a 

median of 1.33. The average contrast sensitivity score was 4.5% (median = 3.15%), 

ranging between 0.14% and 16.67%.  

 

 

The associations between chlordecone exposure variables and contrast sensitivity scores 

are illustrated in Table 2. Results show that higher cord plasma chlordecone levels were 

associated with lower FrACT scores in the continuous adjusted model ( = -0.068, 95% 

CI = -0.133, -0.002). A similar, although marginal, association was obtained after the 

additional statistical adjustment for the 7-year-old child exposure ( = -0.062, 95% CI = -

0.128, 0.003). The interaction term between sex and chlordecone exposure was null, 

either in the adjusted models 1 or 2.   

 

 

 

No associations were observed between chlordecone child concentrations and contrast 

sensitivity scores (Table 2), although higher child plasma chlordecone levels were 

marginally ( p < 0.1) associated with lower FrACT scores in the continuous adjusted 

model ( = -0.059, 95% CI = -0.128, 0.010). This association vanished after additional 

adjustment for cord chlordecone concentrations (p > 0.1). Because the interaction terms 

between sex and chlordecone exposure were at p < 0.2 (see details in Method section), 

follow-up sex-stratified analyses were conducted. As such, the same continuous adjusted 
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models were applied in girls (n=135) and boys (n=115), separately.  A significant 

negative association was observed exclusively in boys ( = -0.112, 95% CI = -0.205, -

0.018, p = 0.020 versus  = -0.015, 95% CI = -0.118, 0.088, p = 0.773 in girls). The 

association observed in boys remained significant after controlling for prenatal exposure 

( = -0.094, 95% CI = -0.188, 0.000, p = 0.049). Of note, FrACT scores and chlordecone 

concentrations, pre- and postnatal, did not significantly differ between boys and girls.  

 

A sensitivity analysis was conducted by re-running the continuous adjusted regression 

models 2 (see Table 2) where exposure to other toxicants (see details in Method section) 

were found to be correlated with the outcome at p < 0.2, that is child plasma PCB 153 

concentrations and child blood Pb. Results using the whole sample were in line with the 

principal analyses: Cord chlordecone concentrations and contrast sensitivity remained 

marginally associated ( = -0.054, 95% CI = -0.118, 0.010, p = 0.100), and child 

chlordecone concentrations remained not associated  with contrast sensitivity ( = -0.043, 

95% CI = -0.112, 0.026, p = 0.218). Regarding the additional sex-stratified analyses for 

child exposure, the significant association initially found in boys ( = -0.094, 95% CI = -

0.188, 0.000, p = 0.049) was still present ( = -0.101, 95% CI = -0.195, -0.007, p = 

0.035). 

 

 

4. Discussion 
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The present study aimed to evaluate the association between pre- and postnatal 

chlordecone exposures on visual contrast sensitivity in school-aged children. Results 

from continuous adjusted models showed that higher cord plasma chlordecone 

concentrations were significantly associated with lower contrast sensitivity. Although no 

association was found with child chlordecone concentrations, further sex-specific 

stratified analyses revealed  a significant decrease in the contrast sensitivity scores of 

boys, but this reduction was not observed in girls. Interestingly, these findings resisted to 

the additional statistical adjustment for mutual chlordecone exposure (see Models 2, 

Table 2). The sensitivity analysis revealed that further adjustments for PCB-153 and Pb 

co-exposures did not change the results.  

   

A decrease of contrast sensitivity can be due to alterations of ocular and/or retinal/brain 

processing (Waksman & Brody, 2007). The contribution of ocular refraction errors can 

be reasonably excluded here. First, all of the tested children were wearing their glasses 

during the visual evaluation, despite the prescription for some of them not being up to 

date. Nonetheless, visual acuity was verified and found to be in the normal range for the 

vast majority (> 90%) of the children. Furthermore, the stimulus size used for contrast 

sensitivity testing was quite large (low to medium spatial frequencies), which prevents 

alterations of stimulus visibility caused by potential refractive errors. In fact, deficits in 

contrast sensitivity observed at low spatial frequencies reflect predominantly defects in 

post-retinal neural processing (Waksman & Brody, 2007). It is thus likely that the 

observed decrease in contrast sensitivity is mainly due to altered retinal and/or brain 

processing.  
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Contrast sensitivity function relies on neural processing along the visual pathway, which 

involves various synaptic junctions and neurotransmitters. For instance, impaired contrast 

sensitivity has been found in pharmacological studies using drugs that alter GABAergic 

transmission, while visual acuity remained relatively intact (Blin et al., 1993; Haris and 

Phillipson, 1995; Giersch et al., 2006). Dopamine is another important neuromodulator of 

visual processing at both retinal and cortical levels (Albrecht, Quaschling, Zippel, & 

Davidowa, 1996; Parkinson, 1989; Witkovsky & Schutte, 1991). An improvement in 

contrast sensitivity has been demonstrated following administration of dopaminergic 

agonists in humans (Bulens, Meerwaldt, Van der Wildt, & Van Deursen, 1987; 

Domenici, Trimarchi, Piccolino, Fiorentini, & Maffei, 1985). Considering that 

organochlorine pesticides have also been proven to induce oxidative stress, mitochondrial 

dysfunction and caspase activation in dopaminergic neurons (Schuh, Richardson, Gupta, 

Flaws, & Fiskum, 2009; Sharma, Zhang, Barber, & Liu, 2010), and, on the other hand, 

that chlordecone can alter catecholamine activity - including dopamine - by decreasing 

their synaptic binding and uptake (Desaiah, 1985), one can reasonably hypothesize that 

associations between chlordecone exposure and contrast sensitivity dysfunction observed 

in the current study may potentially be mediated, at least partially, through dopaminergic-

related mechanisms. 

 

Our results highlight the importance of assessing the functional integrity of sensory 

processing when evaluating chemical neurodevelopmental toxicity. The relevance of 

sensory assessment is supported by our previous studies in the French mother-child 
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PELAGIE cohort, showing subtle functional visual processing alterations that were not 

detectable with cognitive evaluations (e.g., Cartier et al., 2018). Moreover, visual 

assessments in epidemiological cohort studies together with neuropsychological testing 

can  aid in detecting participants needing adjustments due to potential visual deficits. This 

visual adjustment may, in turn, provide a better prediction of cognitive dysfunction in 

association with exposure, as demonstrated in the Faroese children in relation to mercury 

exposure (Grandjean et al., 2001).  

 

The pattern of sex-dependent results found in the current study is noteworthy. In the 

study of Cartier et al. (2018), the authors reported a decrease of  contrast 

sensitivity scores in 6-year-old children in association with prenatal exposure to 

organophosphate pesticides in boys, but not in girls. To our knowledge, this is the only 

study which has investigated the impact of pesticide exposure during pregnancy on child 

visual function. Other sex-dependent associations of neurodevelopmental deficits with 

pesticides in children have also been reported (e.g., Philippat et al., 2018; Rauh et al., 

2015; Suarez-Lopez, Himes, Jacobs, Alexander, & Gunnar, 2013; van Wendel de Joode 

et al., 2016; Wagner-Schuman et al., 2015). For instance, prenatal exposure to 

organophosphate pesticides was significantly associated with attention problems, with a 

stronger association found in the boys of a rural California longitudinal cohort (Marks et 

al., 2010). In another birth cohort study, prenatal exposure to organophosphate pesticides 

decreased working memory performance in boys, as assessed by the Wechsler 

Intelligence Scale for Children (WISC-IV), with no apparent deficits in girls (Horton, 

Kahn, Perera, Barr, & Rauh, 2012), although the interaction term between exposure and 

Jo
ur

na
l P

re
-p

ro
of



 

 

 

child sex was not significant.  It is important to note that the sex-specific results from all 

these studies need to be interpret with caution because of small sample size, differences 

in measured outcomes, participant characteristics or statistically power.  

 

Although the underlying mechanisms are still unknown, genetic and hormonal factors are 

generally thought to play an important role in sex-related differences observed in 

epidemiological studies. A growing body of experimental evidence show multiple levels 

of sexual dimorphisms in the brain, i.e., sex differences in neurochemical phenotype, 

synapses, cell genesis, inflammatory mediators, epigenetics, and brain volume 

(McCarthy, Nugent, & Lenz, 2017), which form a myriad of targets for neurotoxicants 

across sexes, providing biological plausibility for sex-specific mechanisms of action. In 

vivo rodent studies have shown that males are significantly more sensitive to 

organophosphate pesticides than females (Comfort & Re, 2017). For instance, the cellular 

expression of inflammatory molecules and reactive oxygen species (ROS) has been found 

to be higher in males compared to female rats following dimethoate exposure (Astiz, 

Acaz-Fonseca, & Garcia-Segura, 2014). Regarding chlordecone, sex-dependent effects of 

perinatal exposure have frequently been reported in animal studies, particularly in the 

development of behavioral and/or neural function (Cooper, Vodicnik, & Gordon, 1985; 

Mactutus & Tilson, 1985). These effects have been linked to the well-known property of 

chlordecone to alter pituitary hormones and estrogenic activity (Hammond et al., 1979; 

Hong, Hudson, Yoshikawa, Ali, & Mason, 1985; Hudson et al., 1984; Kuiper et al., 1998; 

Lemaire et al., 2006). 
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While the longitudinal design of the TIMOUN study and the computer-based assessment 

of visual contrast sensitivity are the primary strengths of our study, it also has limitations. 

First, we conducted a large number of analyses with multiple comparisons, which 

increases the likelihood of spurious associations. Nevertheless, our interpretations 

focused on the pattern of the results instead of on isolated findings. Second, the FrACT 

task was based on a single stimulus size, i.e., a large Landolt C optotype, which is 

composed of a mixture of low to medium spatial frequencies. It is common when 

measuring contrast sensitivity to use several and specific sine-wave spatial frequencies to 

estimate visual functions as a whole. For instance, Lebel et al. (1998) have reported 

specific deficits in the contrast sensitivity of Amazonian adults exposed to mercury, 

which were specific to high spatial frequencies, i.e., not detectable at low and medium 

ones. 

 

5. Conclusion  

 

Our study showed adverse associations between chlordecone exposures and children’s 

contrast sensitivity scores, pointing to the importance of using visual assessments in 

cohort studies to better understand the impact of environmental contaminants on the brain 

integrity of children. The impact of postnatal exposure to chlordecone appeared 

moderated by child sex, such that the visual performance was decreased as a function of 

exposure, particularly in boys. Further epidemiological studies are necessary to replicate 

these findings, as well as laboratory studies to make reasonable causal inferences 
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between chlordecone exposure and the development of brain processing, including 

sensory functions. 
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Table 1. Descriptive characteristics of the participants 
(n=285).         

  N % Median Mean SD Range (min-max) 

Child characteristics              

Age at the testing time (years) 285   7.70 7.68 0.2127 0.90 (7.10-8.00) 

Gestational age (weeks) 285   39.00 38.46 1.573 7.00 (34.00-41.00) 

Sex (% male) 285 45.6         

Breastfeeding (% yes) 243 85.3         

<3 months 40 14.0         

3-7 months 83 29.1         

>7-18 months  66 23.2         

>18 months 54 18.9         

Wearing glasses (% yes)ᵃ 281 29.8         

Maternal characteristics             

Age at birth time (years) 285   32.63 31.72 6.76 20.03 (15.10-45.14) 

Education 293           

≤ 12th Grade (Bac) 144 50.5         

> 12th Grade 141 49.5         

Smoking at inclusion (% yes) 285 2.8         

Alcohol at inclusion (% yes) 278 2.5         

Raven's Progressive Matrices score 268   37.00 35.46 12.23 49 (9-58) 

Chlordecone exposures             

Cord              

% < LOD 62 21.8         
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Concentration (µg/L) 223   0.30 0.80 2.77 29.72 (0.06-29.78) 

Child              

% < LOD 73 26.7         

Concentration (µg/L) 209   0.08 0.17 0.52 6.99 (0.02-7.01) 

Freiburg Acuity and Contrast Test              

Acuity (Snellen fraction ratio) 263 92.20 1.33 1.36 0.41  1.72 (0.28-2.00) 

Contrast sensitivity (%) 266 93.30 3.15 4.50 3.84 16.52 (0.14-16.67) 

ᵃ At the testing time             

SD : Standard deviation             
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Table 2. Associations between chlordecone exposure and visual contrast sensitivity.   

      Adjusted Model 1   Adjusted Model 2   

  Exposures n 𝛽 (95% CI) p 𝛽 (95% CI) p 

   Cord levels  (µg/L)           

All < LOD (0.06) 48 Reference   Reference   

  ≥ 0.06-0.3 98 0.021(-0.086, 0.129 0.698 0.017(-0.090, 0.125 0.218 

  > 0.3 104 -0.069(-0.175, 0.037) 0.201 -0.066(-0.172, 0.039) 0.754 

  continuous (log)  250 -0.068(-0.133, -0.002) 0.042 -0.062(-0.128, 0.003) 0.062 

  sex x chlordecone 250 0.057(-0.078, 0.193) 0.403 0.052(-0.083, 0.187) 0.449 

  Child levels (µg/L)           

All < LOD (0.02) 68 Reference   Reference   

  ≥ 0.02-0.08 78 0.072(-0.02, 0.167) 0.141 0.067(-0.03, 0.162) 0.167 

  > 0.08 104 0.26(-0.07, 0.118) 0.583 0.021(-0.07, 0.113) 0.653 

  continuous (log)  250 -0.059(-0.128, 0.010) 0.094 -0.051(-0.120, 0.018) 0.150 

  sex x chlordecone 250 0.110 (-0.027, 0.247) 0.115 0.107(-0.029, 0.243) 0.122 

Model 1: adjusted for child sex and age, maternal IQ (Raven score), maternal education,  maternal alcohol   

intake during pregrancy and plasma lipids.       

Model 2: additional adjustment for the complementary chlordecone exposure  (i.e., child levels when the   

cord levels was the variable of interest, and vice versa).        
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