M. A. Kohanski, D. J. Dwyer, B. Hayete, C. A. Lawrence, and J. J. Collins, A common mechanism of cellular death induced by bactericidal antibiotics, Cell, vol.130, pp.797-810, 2007.

M. A. Kohanski, D. J. Dwyer, J. Wierzbowski, G. Cottarel, and J. J. Collins, Mistranslation of membrane proteins and two-component system activation trigger antibiotic-mediated cell death, Cell, vol.135, pp.679-690, 2008.

J. J. Foti, B. Devadoss, J. A. Winkler, J. J. Collins, and G. C. Walker, Oxidation of the guanine nucleotide pool underlies cell death by bactericidal antibiotics, Science, vol.336, pp.315-319, 2012.

K. Shatalin, E. Shatalina, A. Mironov, and E. Nudler, H2S: A universal defense against antibiotics in bacteria, Science, vol.334, pp.986-990, 2011.

X. Wang and X. Zhao, Contribution of oxidative damage to antimicrobial lethality, Antimicrob. Agents Chemother, vol.53, pp.1395-1402, 2009.

I. Keren, Y. Wu, J. Inocencio, L. R. Mulcahy, and K. Lewis, Killing by bactericidal antibiotics does not depend on reactive oxygen species, Science, vol.339, pp.1213-1216, 2013.

H. Van-acker, J. Gielis, M. Acke, F. Cools, P. Cos et al., The role of reactive oxygen species in antibiotic-induced cell death in burkholderia cepacia complex bacteria, PLoS One, vol.11, p.159837, 2016.

S. Kalghatgi, C. S. Spina, J. C. Costello, M. Liesa, J. R. Morones-ramirez et al., Bactericidal antibiotics induce mitochondrial dysfunction and oxidative damage in mammalian cells, Sci. Transl. Med, vol.5, pp.192-85, 2013.

D. A. Lowes, C. Wallace, M. P. Murphy, N. R. Webster, and H. F. Galley, The mitochondria targeted antioxidant MitoQ protects against fluoroquinolone-induced oxidative stress and membrane damage in human Achilles tendon cells, Free Radic. Res, vol.43, pp.323-328, 2009.

E. E. Mckee, M. Ferguson, A. T. Bentley, and T. A. Marks, Inhibition of mammalian mitochondrial protein synthesis by oxazolidinones, Antimicrob. Agents Chemother, vol.50, pp.2042-2049, 2006.

M. R. Bidell and T. P. Lodise, Fluoroquinolone-associated tendinopathy: Does levofloxacin pose the greatest Risk?, Pharmacotherapy, vol.36, pp.679-693, 2016.

J. S. Wolfson and D. C. Hooper, The fluoroquinolones: Structures, mechanisms of action and resistance, and spectra of activity in vitro, Antimicrob. Agents Chemother, vol.28, pp.581-586, 1985.

A. Hangas, K. Aasumets, N. J. Kekalainen, M. Paloheina, J. L. Pohjoismaki et al., Ciprofloxacin impairs mitochondrial DNA replication initiation through inhibition of Topoisomerase 2, Nucleic Acids Res, vol.46, pp.9625-9636, 2018.

H. Cho, T. Uehara, and T. G. Bernhardt, Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery, Cell, vol.159, pp.1300-1311, 2014.

A. Tonazzi, A. N. Giangregorio, L. Console, and C. Indiveri, Mitochondrial carnitine/acylcarnitine translocase: insights in structure/ function relationships. Basis for drug therapy and side effects prediction, Mini Rev. Med. Chem, vol.15, pp.396-405, 2015.

B. D. Davis, Mechanism of bactericidal action of aminoglycosides, Microbiol. Rev, vol.51, pp.341-350, 1987.

T. Hutchin and G. Cortopassi, Proposed molecular and cellular mechanism for aminoglycoside ototoxicity, Antimicrob. Agents Chemother, vol.38, pp.2517-2520, 1994.

R. E. Brummett and K. E. Fox, Aminoglycoside-induced hearing loss in humans, Antimicrob. Agents Chemother, vol.33, pp.797-800, 1989.

L. M. Barnett and B. S. Cummings, Nephrotoxicity and renal pathophysiology: A contemporary perspective, Toxicol. Sci, vol.164, pp.379-390, 2018.

R. J. Andrade, S. López-ortega, M. C. López-vega, M. Robles, I. Cueto et al., Idiosyncratic drug hepatotoxicity: a 2008 update, Expert Rev. Clin. Pharmacol, vol.1, pp.261-276, 2008.

R. J. Andrade and P. M. Tulkens, Hepatic safety of antibiotics used in primary care, J Antimicrob Chemother, vol.66, pp.1431-1446, 2011.

M. S. Padda, M. Sanchez, J. A. Akhtar, and J. L. Boyer, Drug-induced cholestasis, Hepatology, vol.53, pp.1377-1387, 2011.

S. Russmann, J. A. Kaye, S. S. Jick, and H. Jick, Risk of cholestatic liver disease associated with flucloxacillin and flucloxacillin prescribing habits in the UK: cohort study using data from the UK General Practice Research Database, Br. J. Clin. Pharmacol, vol.60, pp.76-82, 2005.

S. H. Hussaini, C. S. O'brien, E. J. Despott, and H. R. Dalton, Antibiotic therapy: a major cause of drug-induced jaundice in southwest England, Eur. J. Gastroenterol. Hepatol, vol.19, pp.15-20, 2007.

E. Bjornsson and R. Olsson, Outcome and prognostic markers in severe drug-induced liver disease, Hepatology, vol.42, pp.481-489, 2005.

E. Andrews and A. K. Daly, Flucloxacillin-induced liver injury, Toxicology, vol.254, pp.158-163, 2008.

C. Aninat, A. Piton, D. Glaise, T. L. Charpentier, S. Langouet et al., Expression of cytochromes P450, conjugating enzymes and nuclear receptors in human hepatoma HepaRG cells, Drug Metab. Dispos, vol.34, pp.75-83, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00702085

A. Burban, A. Sharanek, R. Hüe, M. Gay, S. Routier et al., Penicillinase-resistant antibiotics induce non-immune-mediated cholestasis through HSP27 activation associated with PKC/P38 and PI3K/AKT pathways, Sci. Rep, vol.7, p.1815, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01522586

D. A. Lazarczyk, N. S. Goldstein, and S. C. Gordon, Trovafloxacin hepatotoxicity, Dig. Dis. Sci, vol.46, pp.925-926, 2001.

Z. P. Qureshi, E. Seoane-vazquez, R. Rodriguez-monguio, K. B. Stevenson, and S. L. Szeinbach, Market withdrawal of new molecular entities approved in the United States from, Pharmacoepidemiol Drug Saf, vol.20, pp.772-777, 1980.

L. E. Derby, H. Jick, D. A. Henry, and A. D. Dean, Erythromycin-associated cholestatic hepatitis, Med. J. Aust, vol.158, pp.600-602, 1993.

J. M. Leitner, W. Graninger, and F. Thalhammer, Hepatotoxicity of antibacterials: pathomechanisms and clinical data, vol.38, pp.3-11, 2010.

W. W. Yew and C. C. Leung, Antituberculosis drugs and hepatotoxicity, Respirology, vol.11, pp.699-707, 2006.

C. Zhang, N. Wang, Y. Xu, H. Y. Tan, S. Li et al., Molecular mechanisms involved in oxidative stress-associated liver injury induced by Chinese herbal medicine: An experimental evidence-based literature review and network pharmacology study, Int. J. Mol. Sci, vol.19, p.2745, 2018.

K. Begriche, J. Massart, M. A. Robin, A. Borgne-sanchez, and B. Fromenty, Drug-induced toxicity on mitochondria and lipid metabolism: mechanistic diversity and deleterious consequences for the liver, J. Hepatol, vol.54, pp.773-794, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00739371

M. P. Grillo, Detecting reactive drug metabolites for reducing the potential for drug toxicity, Expert Opin. Drug Metab. Toxicol, vol.11, pp.1281-1302, 2015.

A. Tailor, J. C. Waddington, X. Meng, and B. K. Park, Mass spectrometric and functional aspects of drug-protein conjugation, Chem. Res. Toxicol, vol.29, pp.1912-1935, 2016.

E. V. Warbrick, A. L. Thomas, V. Stejskal, and J. W. Coleman, An analysis of beta-lactamderived antigens on spleen cell and serum proteins by ELISA and Western blotting, Allergy, vol.50, pp.910-917, 1995.

W. F. Salminen, R. Voellmy, and S. M. Roberts, Differential heat shock protein induction by acetaminophen and a nonhepatotoxic regioisomer, 3?-hydroxyacetanilide, in mouse liver, J. Pharmacol. Exp. Ther, vol.282, pp.1533-1540, 1997.

M. Katsogiannou, C. Andrieu, and P. Rocchi, Heat shock protein 27 phosphorylation state is associated with cancer progression, Front. Genet, vol.5, p.346, 2014.

A. Vidyasagar, N. A. Wilson, and A. Djamali, Heat shock protein 27 (HSP27): biomarker of disease and therapeutic target, Fibrogenesis Tissue Repair, vol.5, p.7, 2012.

J. Huot, F. Houle, D. R. Spitz, and J. Landry, HSP27 phosphorylation-mediated resistance against actin fragmentation and cell death induced by oxidative stress, Cancer Res, vol.56, pp.273-279, 1996.

M. J. Liguori, L. M. Anderson, S. Bukofzer, J. Mckim, J. F. Pregenzer et al., Microarray analysis in human hepatocytes suggests a mechanism for hepatotoxicity induced by trovafloxacin, Hepatology, vol.41, pp.177-186, 2005.

C. J. Hsiaoa, H. Younisb, and U. A. Boelsterli, Trovafloxacin, a fluoroquinolone antibiotic with hepatotoxic potential, causes mitochondrial peroxynitrite stress in a mouse model of underlying mitochondrial dysfunction, Chem. Biol. Interact, vol.188, pp.204-213, 2010.

K. M. Beggs, A. M. Fullerton, K. Miyakawa, P. E. Ganey, and R. A. Roth, Molecular mechanisms of hepatocellular apoptosis induced by trovafloxacin-tumor necrosis factor-alpha interaction, Toxicol. Sci, vol.137, pp.91-101, 2014.

F. Foufelle and B. Fromenty, Role of endoplasmic reticulum stress in drug-induced toxicity, Pharmacol. Res. Perspect, vol.4, p.211, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01269898

A. Burban, A. Sharanek, C. Guguen-guillouzo, and A. Guillouzo, Endoplasmic reticulum stress precedes oxidative stress in antibiotic-induced cholestasis and cytotoxicity in human hepatocytes, Free Rad, Biol. Med, vol.115, pp.166-178, 2018.

D. R. Beriault and G. H. Werstuck, Detection and quantification of endoplasmic reticulum stress in living cells using the fluorescent compound, Thioflavin T, Biochim. Biophys. Acta, vol.1833, pp.2293-2301, 2013.

B. M. Devereaux, D. H. Crawford, P. Purcell, L. W. Powell, and H. P. Roeser, Flucloxacillin associated cholestatic hepatitis. An Australian and Swedish epidemic?, Eur. J. Clin. Pharmacol, vol.49, pp.81-85, 1995.

A. Sharanek, P. Bachour-el-azzi, H. Al-attrache, C. C. Savary, L. Humbert et al., Different dose-dependent mechanisms are involved in early cyclosporine A-induced cholestatic effects in HepaRG cells, Toxicol. Sci, vol.141, pp.244-253, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01016342

E. Sarro, C. Jacobs-cacha, E. Itarte, and A. Meseguer, A pharmacologically-based array to identify targets of cyclosporine A-induced toxicity in cultured renal proximal tubule cells, Toxicol. Appl. Pharmacol, vol.258, pp.275-287, 2012.

R. J. Weaver, E. A. Blomme, A. Chadwick, I. M. Copple, H. H. Gerets et al., Managing the challenge of drug-induced liver injury: A roadmap for the development and deployment of preclinical predictive models, Nat. Rev. Drug Discov, vol.19, pp.131-148, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02397617

M. Visentin, D. Lenggenhager, Z. Gai, and G. A. Kullak-ublick, Drug-induced bile duct injury, pp.1498-1506, 2018.

A. Sharanek, A. Burban, L. Humbert, C. Guguen-guillouzo, D. Rainteau et al., Progressive and preferential cellular accumulation of hydrophobic bile acids induced by cholestatic drugs is associated with inhibition of their amidation and sulfation, Drug Metab. Dispos, vol.45, pp.1292-130, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01671424