, = 13.1, 7.2 Hz, 1H). 13 C{ 1 H} NMR (125.8 MHz, vol.2

. Hz, 1 (2s), 127.4 (d, J = 11.1 Hz), 128.0 (d, J = 10.2 Hz), 128.3, 128.4 (d, J = 9, 57.3 (dd, J = 10.9, 7.0 Hz), 83.6 (dd, J = 9, vol.5, pp.31-32

. Mhz, HRMS (ESI/Q-TOF) calcd for C 40 H 43 B 2 NOP 2 Na, ? +71.1 (br.s), +110.6 (br.s), vol.2, pp.610-611, 0928.

, CHCl 3 ). 1 H NMR (500 MHz, CDCl 3 ): ? 0.42-1.46 (m, 6H), 1.28 (d, J = 6.6 Hz, 3H), 2.19 (d, J = 7.6 Hz, 3H), 4.02 (s, 5H), 4.09 (m, 1H), 4.33 (m, 1H), 4.40 (m, 2H), 4.58 (m, 1H), 5.14 (t, J = 9.4 Hz, 1H), 6.52-6.58 (m, 2H), 6.95-7.05 (m, 5H), 7.07-7.18 (m, 3H), 7.15-7.17 (m, 1H), 7.19-7.24 (m, 2H), 7.29-7.33 (m, 2H), 7.36-7.40 (m, 1H), 7.42-7.49 (m, 4H). 13 C{ 1 H} NMR (125.8 MHz, vol.3

. Hz, 3 Hz), 130.3 (d, J =2.4 Hz), 130.7 (d, J = 57, vol.128

. Mhz, HRMS (ESI/Q-TOF) calcd for C 38 H 43 B 2 FeNOP 2 Na [M+Na] + : 692.2261; found: 692.2247. Anal. calcd for C 38 H 43 B 2 FeNOP 2 : C 68, CDCl 3 ): ? +71.7 (br.s), +106.9 (br.s). HRMS (ESI/Q-TOF) calcd for C 38 H 43 B 2 FeNOP, vol.21

. Hz, 2-(?-Naphtylphenylphosphinito)-1-methyl-2-phenylethyl], Nmethylamino diphenylphosphine dichloropalladium complex 32. X-ray quality crystals were grown by slow evaporation of CH 2, 134.6 (d, J = 12.9 Hz), 134.8, 136.1 (d, J = 2.6 Hz). 31 P{ 1 H} NMR (121.5 MHz, vol.791, 1012.

, Slighty yellow crystals. 1 H NMR (500 MHz

, CDCl 3 ): ? 14.0 (d, J = 2.8 Hz), Hz, 3H), 4.83-4.95 (m, 2H), 7.20-7.33 (m, 7H), 7.36-7.53 (m, 10H), 7.55-7.59 (m, 1H), 7.72-7.83 (m, 4H), 7.85-7.90 (m, 1H), 8.06-8.17 (m, 4H). 13 C{ 1 H} NMR (125.8 MHz, vol.33

, J =, vol.56, issue.1

. Hz, 3 (d, J = 2.2 Hz), 131.6 (d, J = 2.5 Hz), 132.1 (d, J = 51.2 Hz), 132.6 (d, J =, vol.131, issue.1

. Hz, 132.7 (d, J = 2.0 Hz), vol.132

. Hz, 8 Hz), 135.4 (d, J = 12.8 Hz), 135.4 (d, J = 12.8 to a one pot procedure. First, the AMPP*(BH 3 and the complex was used without further purification. 4.10.3. Dimethyl (1,3-diphenylallyl)malonate 28: 1 H NMR (300 MHz, vol.133

, 2. The enantiomeric excess was determined by HPLC analysis on Chiralpack IA, 1.00 mL/min, Hz, 1H), 6.41 (d, J = 15.8 Hz, 1H), 7.09-7.28 (m, 10H). 13 C{ 1 H} NMR (75 MHz, vol.9

, Hz, 1H), 6.38 (dd, J = 15.8, 7.5 Hz, 1H), 6.61 (d, J = 15.8 Hz, 1H), 7.21-7.26 (m, 1H), 7.28-7.34 (m, 4H), 7.36-7.42 (m, 8H), 7.44-7.51 (m, 2H). 13 C{ 1 H} NMR

. Mhz,

. Germany, Phosphorus (III) Ligands in Homogeneous Catalysis: Design and Synthesis, 2008.

C. Chirality, E. M. Carreira, and H. Yamamoto, , 2012.

S. E. Denmark and G. L. Beutner, Lewis base catalysis in organic synthesis

D. Enders, T. V. Nguyen, X. Li, Q. Song, H. Ni et al., Chiral quaternary phosphonium salts: a new class of organocatalysts, Adv. Synth. Catal, vol.351, pp.9344-9411, 2009.

P. Ligands-in-enantioselective-catalysis, A. Grabulosa, . Ed, . Rsc-catalysis-series, U. K. Cambridge et al., Asymmetric catalysis as a method for the synthesis of chiral organophosphorus compounds, Tetrahedron: Asymmetry, vol.25, pp.5771-5794, 2011.

S. Takizawa, E. Rémond, F. Arteaga-arteaga, Y. Yoshida, V. Sridharan et al., P-chirogenic organocatalysts: application to the aza-Morita-Baylis-Hillman (aza-MBH) reaction of ketimines, J. Am. Chem. Soc, vol.49, pp.2765-2768, 2013.

D. Uraguchi, R. Shibazaki, N. Tanaka, K. Yamada, K. Yoshioka et al., Catalystenabled site-divergent stereoselective Michael reactions: overriding intrinsic reactivity of enynyl carbonyl acceptors, Angew. Chem. Int. Ed, vol.57, pp.5853-5860, 2018.

X. Yang, J. Li, D. Wang, M. Xie, G. Qu et al., Enantioselective dearomative [3+2] cycloaddition of 2-nitrobenzofurans with aldehyde-derived Morita-Baylis-Hillman carbonates, Chem. Commun, vol.55, pp.9144-9147, 2019.

F. Agbossou, J. Carpentier, F. Hapiot, I. Suisse, and A. Mortreux, The aminophosphine-phosphinites and related ligands: synthesis, coordination chemistry and enantioselective catalysis, Coord. Chem. Rev, pp.178-180, 1998.

F. Niedercorn and I. Suisse, Recent advances in their design, coordination chemistry, and use in enantioselective catalysis, Agbossou, F. Chiral Aminophosphine-Phosphinites (AMPP) in Phosphorus Ligands in Asymmetric Catalysis: Synthesis and Applications, vol.242, pp.477-505, 2003.

G. Buono, C. Siv, G. Peiffer, C. Triantaphyldes, P. Denis et al., Threophos: A new chiral aminophosphine phosphinite (AMPP) ligand highly efficient in asymmetric hydrovinylation of cyclohexa-1,3-diene catalyzed by Nickel complexes, J. Org, issue.7

O. Chem-;-pardigon, G. Buono, O. Pardigon, A. Tenaglia, G. Buono et al., Aminophosphine phosphinites derived from chiral 1,2-diphenyl-2-aminoethanols: synthesis and application in rhodium-catalyzed asymmetric hydrogenation of dehydroamino acid derivatives, Tetrahedron: Asymmetry, vol.50, pp.1487-1494, 1977.

V. Turcry and C. Pasquier, J. Organometallics, vol.19, pp.5723-5732, 2000.

F. ;. Niedercorn, N. V. Chimie-;-dubrovina, V. I. Taranov, Z. Kadyrova, A. Monsees et al., Versatile synthesis of chiral aminophosphine phosphinite (AMPPs) as ligands for enantioselective hydrogenation, Aminophosphine phosphinite (AMPP) and enantioselective hydrogenation of ketones: further developments, vol.6, pp.227-230, 1911.

N. Kokel, A. Mortreux, F. Petit, L. Gong, G. Chen et al., Versatile synthesis of P-chiral (ephedrine) AMPP ligand via their borane complexes. Structural consequences in Rh-catalyzed hydrogenation of methyl ?-acetamidocinnamate, Tetrahedron: Asymmetry, vol.370, issue.9, pp.4729-4743, 1989.

C. Darcel, D. Moulin, J. Henry, M. Lagrelette, P. Richard et al.,

N. Khiri, E. Bertrand, M. Ondel-eymin, Y. Rousselin, J. Bayardon et al., Enantioselective hydrogenation catalysis aided by a ?-bonded calix[4]arene to a P-chirogenic aminophosphane phosphinite rhodium complex, Modular P-chirogenic aminophosphane-phosphinite ligands for Rh-catalyzed asymmetric hydrogenation: A new model for prediction of enantioselectivity, vol.29, pp.3622-3631, 2007.

N. M. Vogt, D. Carbo, J. J. Lledos, A. Vogt, D. Bo et al., Origin of stereoinduction by chiral aminophosphane phosphinite ligands in enantioselective catalysisi: asymmetric hydroformylation, Chem. Eur. J, vol.6, issue.11, pp.4293-4301, 2000.

A. Jaillet, J. Bayardon, and S. Jugé, C-bulky P-chirogenic organophosphorus compounds, Intern. Patent. EP, vol.18305304, 2018.

P. M. J;-kubinski and F. Sammicelli, th ). (13) For a representative example of diastereoselective synthesis with dynamic resolution of binaphtylithium reagent, see: Clayden, 1926.

M. Heliwell and L. Diorazio, Sulfoxides as 'traceless' resolving agents for the synthesis of atropoisomers by dynamic or classical resolution, Tetrahedron, vol.60, pp.4387-4397, 2004.

P. C. Kamer, Parallel synthesis and screening of polymer-supported phosphorusstereogenic aminophosphane-phosphite and -phosphinite ligands, Angew. Chem. Int. Ed, vol.47, pp.6602-6605, 2008.

F. Chaux, S. Frynas, H. Laureano, C. Salomon, G. Morata et al.,

M. Stephan, R. Merdès, P. Richard, M. Eymin, J. Henry et al., Asymmetric transition-metal-catalyzed allylic alkylations: Applications in total synthesis, C.R. Chimie, vol.13, issue.16, pp.2921-2943, 2003.

M. Zhang, T. Sieber, and J. D. , Catalytic asymmetric allylic alkylation employing heteroatom nucleophiles: a powerful method for C-X bond formation, Chem. Sci, vol.1, pp.970-1010, 2010.

C. Ding and X. L. Hou, Palladium-catalyzed asymmetric allylic alkylation strategies for the synthesis of acyclic tetrasubstituted stereocenters, Process Res. Dev, vol.16, pp.1-30, 2012.

J. Fournier, O. Lozano, C. Menozzi, S. Arseniyadis, and J. Cossy, Palladium-catalyzed asymmetric allylic alkylation of cyclic dienol carbonates: efficient route to enantioenriched ?-butenolides bearing an all-carbon ?-quaternary stereogenic center

B. Lei, Q. Zhang, W. Yu, Q. Ding, C. Ding et al., Kinetic resolution of 2-substituted 2,3-dihydro-4-pyridones by palladium-catalyzed asymmetric allylic alkylation: catalytic asymmetric total synthesis of Indolizidine (-)-209I, Angew. Chem. Int. Ed, vol.52, pp.5932-5935, 2013.

M. N. Oliveira, S. Arseniyadis, and J. Cossy, Palladium-catalyzed asymmetric allylic alkylation of 4-substituted isoxazolidin-5-ones: Straightforward access to ? 2,2 -amino acids

B. M. Trost, W. Bai, C. Hohn, Y. Bai, and J. J. Cregg, Eur. J, vol.24, pp.4810-4814, 2018.

, Palladium-catalyzed asymmetric allylic alkylation of 3-substituted 1H-indoles and tryptophan derivatives with vinylcyclopropanes, J. Am. Chem. Soc, vol.140, pp.6710-6717, 2018.

T. Song, S. Arseniyadis, and J. Cossy, Asymmetric synthesis of ?-quaternary ?-lactams through palladium-catalyzed asymmetric allylic alkylation, Org. Lett, vol.21, pp.603-607, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02533178

U. Nettekoven, M. Widhalm, H. Kalchhauser, P. C. Kamer, and P. W. Van-leeuven,

N. M. Lutz, M. Spek, and A. L. , Steric and electronic ligand perturbations in catalysis: asymmetric allylic substitution reactions using C 2 -symmetrical phosphorus-chiral (bi)ferrocenyl donors, J. Org. Chem, vol.66, pp.759-770, 2001.

N. Oohara, K. Katagiri, and T. Imamoto, A novel P-chirogenic phosphine ligand

H. Tsuruta, T. Imamoto, T. Imamoto, M. Nishimura, A. Koide et al., Applications in asymmetric Pd-catalyzed allylic substitution and Ru-catalyzed hydrogenation, ethane: synthesis and use in rhodium-catalyzed asymmetric hydrogenation and palladium-catalyzed asymmetric allylic alkylation, vol.14, pp.7413-7416, 2001.

J. Bayardon, M. Maronnat, A. Langlois, Y. Rousselin, P. D. Harvey et al.,

P. Modular and . Ligands, Clear evidence for both electronic effect and P-chirality driving enantioselectivity in Palladium-catalyzed allylations, Organometallics, vol.34, pp.4340-4358, 2015.

K. Zhang, Q. Peng, X. Hou, and Y. Wu, Kinetic resolution of 2,3-dihydro-2-substituted 4-quinolones by palladium-catalyzed asymmetric allylic alkylation, Angew. Chem. Int. Ed, vol.47, pp.1741-1744, 2008.

W. Yu, X. Yang, C. Xu, C. Ding, X. Hou et al., reaction/palladium catalyzed asymmetric allylic alkylation: access to chiral ?-enaminonitriles with excellent enantioselectivity, J. Org. Chem, vol.131, issue.23, pp.5080-5200, 2009.

P. Haquette, F. Lebideau, S. Dagorne, J. Marrot, and G. Jaouen, A new optically pure half-sandwich Cp-Ru diphosphine complex with a chiral metal centre

A. Phenylpropyldiphenyl-phosphinite}, E. Cryst-;-cesarotti, M. Grassi, L. Prati, and F. Demartin, Dynamic behaviour and X-ray analysis of chiral ? 3 -allylpalladium complexes, J. Organomet. Chem, vol.58, issue.25, pp.407-419, 1989.

E. Cesarotti, M. Grassi, L. Prati, F. ;. Demartin, J. P. Prates-ramalho et al., A comparison of (R,R)-Me-DUPHOS and (R,R)DUPHOS-iPr ligands in the Pd 0 -catalysed asymmetric allylic alkylation reaction: Stereochemical and kinetic considerations, Eur. J. Org. Chem, vol.12, issue.27, pp.3498-3501, 1991.

A. B. Reitz, E. W. Baxter, E. E. Codd, C. B. Davis, A. D. Jordan et al., Orally active benzamide antipsychotic agents with affinity for dopamine D 2 , serotonin 5-HT 1A , and adrenergic ? 1 receptors, J. Med. Chem, vol.41, 1997.

, Chem. Eur. J, vol.25, pp.1472-1475, 2019.

V. Diemer, M. Begaud, F. R. Leroux, F. Colobert, F. Maienza et al., Ferrocenyl diphosphines containing stereogenic phosphorus atoms. Synthesis and application in the rhodium-catalyzed asymmetric hydrogenation, Eur. J. Org. Chem, vol.18, issue.29, pp.1041-1049, 1999.

U. Nettekoven, P. C. Kamer, P. W. Van-leeuven, M. Widhalm, A. L. Spek et al., Phosphorus-chiral analogues of 1,1'-bis(diphenylphosphino)ferrocene: asymmetric synthesis and application in highly enantioselective rhodium-catalyzed hydrogenation reactions, J. Org. Chem, vol.64, pp.3996-4004, 1999.

E. A. Colby and T. F. Jamison, monodentate ferrocenyl phosphines, novel ligands for asymmetric catalysis, J. Org. Chem, vol.68, pp.156-166, 2003.

J. Holz, K. Rumpel, A. Spannenberg, R. Paciello, H. Jiao et al.,

P. , Xantphos Ligands and related ether diphosphines: Synthesis and application in rhodium-catalyzed asymmetric hydrogenation, ACS Catal, vol.7, pp.6162-6169, 2017.

A. J. Rippert, A. Linden, and H. Hansen, Formation of diastereomerically pure oxazaphospholes and their reaction to chiral phosphane-borane adducts, Helv. Chim. Acta, vol.83, issue.33, pp.2930-2933, 2000.

A. Grabulosa, A. Mannu, G. Muller, and T. Calvet, Font-Bardia, M. P-Stereogenic monophosphines in Pd-catalyzed enantioselective hydrovinylation of styrene

B. Mohar, A. Cusak, B. Modec, and M. Stephan, P-Stereogenic phospholanes or phosphorinanes from o-biarylylphosphines: Two bridges not too far, Organomet. Chem, vol.696, pp.4665-4673, 2011.