P. Kanavos, The rising burden of cancer in the developing world, Ann Oncol, vol.17, pp.15-23, 2006.

A. Urruticoechea, R. Alemany, J. Balart, A. Villanueva, F. Viñals et al., Recent advances in cancer therapy: an overview, Curr Pharm Des, vol.16, pp.3-10, 2010.

M. Plummer, C. Martel, J. Vignat, J. Ferlay, F. Bray et al., Global burden of cancers attributable to infections in 2012: a synthetic analysis, Lancet Glob Health, vol.4, pp.609-616, 2016.

K. V. Rolston, Infections in Cancer Patients with Solid Tumors: A Review, Infect Dis Ther, vol.6, pp.69-83, 2017.

R. J. Fair and Y. Tor, Antibiotics and bacterial resistance in the 21st century, Perspect Medicin Chem, vol.6, pp.25-64, 2014.

I. Romero-canelón and P. J. Sadler, Next-generation metal anticancer complexes: multitargeting via redox modulation, Inorg Chem, vol.52, pp.12276-12291, 2013.

K. D. Mjos and C. Orvig, Metallodrugs in medicinal inorganic chemistry, Chem Rev, vol.114, pp.4540-4563, 2014.

G. Palermo, A. Magistrato, T. Riedel, T. Erlach, C. A. Davey et al.,

. Rothlisberger, Fighting cancer with transition metal complexes: from naked DNA to Protein and Chromatin Targeting Strategies, ChemMedChem, vol.11, pp.1199-1210, 2016.

T. C. Johnstone, S. M. Alexander, W. Lin, and S. J. Lippard, Effects of monofunctional platinum agents on bacterial growth: a retrospective study, J Am Chem Soc, vol.136, pp.116-118, 2014.

K. Joyce, S. Saxena, A. Williams, C. Damurjian, N. Auricchio et al.,

A. L. Tynan and . Demain, Antimicrobial spectrum of the antitumor agent, cisplatin, J Antibiot, vol.63, pp.530-532, 2010.

F. M. Muggia, A. Bonetti, J. D. Hoeschele, M. Rozencweig, and S. B. Howell, Platinum antitumor complexes: 50 years since Barnett Rosenberg's discovery, J Clin Oncol, vol.33, pp.4219-4226, 2015.

S. Dasari and P. B. Tchounwou, Cisplatin in cancer therapy: molecular mechanisms of action, Eur J Pharmacol, vol.740, pp.364-378, 2014.

G. Housman, S. Byler, S. Heerboth, K. Lapinska, M. Longacre et al.,

. Sarkar, Drug resistance in cancer: an overview Cancers (Basel), vol.6, pp.1769-1792, 2014.

T. Makovec, Cisplatin and beyond: molecular mechanisms of action and drug resistance development in cancer chemotherapy, Radiol Oncol, vol.53, pp.148-158, 2019.

F. Li, J. G. Collins, and F. R. Keene, Ruthenium complexes as antimicrobial agents, Chem Soc Rev, vol.44, pp.2529-2542, 2015.

S. Amer, N. El-wakiel, and H. El-ghamry, Synthesis, spectral, antitumor and antimicrobial studies on Cu(II) complexes of purine and triazole Schiff base derivatives, J Mol Struc, vol.1049, pp.326-335, 2013.

G. Scalese, M. F. Mosquillo, S. Rostán, J. Castiglioni, I. Alho et al., Heteroleptic oxidovanadium(IV) complexes of 2-hydroxynaphtylaldimine and polypyridyl ligands against Trypanosoma cruzi and prostate cancer cells, J Inorg Biochem, vol.175, pp.154-166, 2017.

M. Selvaganapathy and N. J. Raman, Pharmacological activity of a few transition metal complexes: a short review, Chem Biol Ther, vol.1, p.108, 2016.

T. Zou, C. T. Lum, C. N. Lok, J. J. Zhang, and C. M. Che, Chemical biology of anticancer gold(III) and gold(I) complexes, Chem Soc Rev, vol.44, pp.8786-8801, 2015.

J. C. Lima and L. Rodriguez, Phosphine-gold(I) compounds as anticancer agents: general description and mechanisms of action, Anticancer Agents Med Chem, vol.11, pp.921-928, 2011.

M. Porchia, M. Pellei, M. Marinelli, F. Tisato, F. Bello et al., New insights in Au-NHCs complexes as anticancer agents, Eur J Med Chem, vol.146, pp.709-746, 2018.

J. A. Lessa, J. C. Guerra, L. F. De-miranda, C. F. Romeiro, J. G. Silva et al.,

N. L. Mendes, E. M. Speziali, H. Souza-fagundes, and . Beraldo, Gold(I) complexes with thiosemicarbazones: cytotoxicity against human tumor cell lines and inhibition of thioredoxin reductase activity, J Inorg Biochem, vol.105, pp.1729-1739, 2011.

A. Molter, J. Rust, C. W. Lehmann, G. Deepa, P. Chiba et al., Synthesis, structures and anti-malaria activity of some gold(I) phosphine complexes containing seleno-and thiosemicarbazonato ligands, Dalton Trans, vol.40, pp.9810-9820, 2011.

B. M. Sutton, Gold compounds for rheumatoid arthritis, Gold Bull, vol.19, pp.15-16, 1986.

M. L. Barrett and G. P. Lewis, Unique properties of auranofin as a potential antirheumatic drug, Agents Actions, vol.19, pp.109-115, 1986.

W. Fiskus, N. Saba, M. Shen, M. Ghias, J. Liu et al.,

A. Huang, K. N. Wiestner, and . Bhalla, Auranofin induces lethal oxidative and endoplasmic reticulum stress and exerts potent preclinical activity against chronic lymphocytic leukemia, Cancer Res, vol.74, pp.2520-2532, 2014.

C. Roder and M. J. Thomson, Auranofin: repurposing an old drug for a golden new age, Drugs R D, vol.15, pp.13-20, 2015.

I. Landini, A. Lapucci, A. Pratesi, L. Massai, C. Napoli et al.,

E. Messori, S. Mini, and . Nobili, Selection and characterization of a human ovarian cancer cell line resistant to auranofin, Oncotarget, vol.8, pp.96062-96078, 2017.

T. S. Reddy, D. Pooja, S. H. Privér, R. B. Luwor, N. Mirzadeh et al.,

S. Ramakrishna, M. Karri, S. K. Kuncha, and . Bhargava, Potent and selective cytotoxic and anti-inflammatory gold(III) compounds containing cyclometalated phosphine sulfide ligands, Chem Eur J, vol.25, pp.14089-14100, 2019.

S. Carboni, A. Zucca, S. Stoccoro, L. Maiore, M. Arca et al.,

S. M. Keppler, A. Meier-menches, M. A. Casini, and . Cinellu, New Variations on the Theme of Gold(III) C?N?N Cyclometalated Complexes as Anticancer Agents: Synthesis and Biological Characterization, Inorg Chem, vol.57, pp.14852-14865, 2018.

X. Wanga and Z. Guo, Towards the rational design of platinum(II) and gold(III) complexes as antitumour agents, pp.1521-1532, 2008.

P. I. Maia, V. M. Deflon, and U. Abram, Gold(III) complexes in medicinal chemistry Future Med Chem, vol.6, pp.1515-1536, 2014.

S. Medici, M. Peana, V. M. Nurchi, J. I. Lachowicz, G. Crisponi et al., Noble metals in medicine: latest advances, Coord Chem Rev, vol.284, pp.329-350, 2015.

C. I. Yeo, K. K. Ooi, and E. R. Tiekink, Gold-based medicine: A paradigm shift in anti-cancer therapy? Molecules, vol.23, p.1410, 2018.

A. Casini, R. W. Sun, and I. Ott, Medicinal Chemistry of Gold Anticancer Metallodrugs, p.18, 2018.

B. Bertrand, M. R. Williams, and M. Bochmann, Gold(III) complexes for antitumor applications: an overview, Chemistry, vol.4, pp.11840-11851, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01947213

M. R. Williams, B. Bertrand, D. L. Hughes, Z. A. Waller, C. Schmidt et al., Cyclometallated Au(III) dithiocarbamate complexes: synthesis, anticancer evaluation and mechanistic studies, Metallomics, vol.10, pp.1655-1666, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01947032

S. J. Berners-price and A. Filipovska, Gold compounds as therapeutic agents for human diseases, Metallomics, vol.3, pp.863-873, 2011.

B. ?. Gli?i? and M. Djuran, Gold complexes as antimicrobial agents: an overview of different biological activities in relation to the oxidation state of the gold ion and the ligand structure, vol.43, pp.5950-5969, 2014.

J. P. Costa, M. J. Pinheiro, S. A. Sousa, A. M. Botelho-do-rego, F. Marques et al.,

C. Oliveira, J. H. Leitão, N. P. Mira, and M. F. Carvalho, Antimicrobial activity of silver camphorimine complexes against Candida strains, Antibiotics, vol.8, p.144, 2019.

, Antibiotic Resistance: Global Report on Surveillance, World Health Organization, 2014.

N. C. Schiødt, T. Bjørnholm, K. Bechgaard, J. J. Neumeier, C. Allgeier et al.,

N. Jacobsen and . Thorup, Structural, electrical, magnetic, and optical properties of bisbenzene-1,2-dithiolato-Au(IV) crystals, Phys Rev B, vol.53, pp.1773-1778, 1996.

D. Belo, H. Alves, E. B. Lopes, M. T. Duarte, V. Gama et al.,

A. Almeida, C. Pérez-benítez, J. Rovira, and . Veciana, Gold complexes with dithiothiophene digands: A metal based on a neutral molecule, Chem Eur J, vol.7, pp.511-519, 2001.

Y. L. Gal, T. Roisnel, P. Auban-senzier, N. Bellec, J. Iñiguez et al.,

. Lorcy, Stable metallic state of a neutral radical single-component conductor at ambient pressure, J Am Chem Soc, vol.140, pp.6998-7004, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01807877

G. Yzambart, N. Bellec, G. Nasser, O. Jeannin, T. Roisnel et al.,

E. Íñiguez, D. Canadell, and . Lorcy, Anisotropic Chemical Pressure Effects in Single-Component Molecular Metals Based on Thiazole Dithiolate and Diselenolate Gold Complexes, J Am Chem Soc, vol.134, pp.17138-17148, 2012.

D. Belo and M. Almeida, Transition metal complexes based on thiophene-dithiolene ligands, Coord Chem Rev, vol.254, pp.1479-1492, 2010.

A. Pintus, M. C. Aragoni, M. A. Cinellu, L. Maiore, F. Isaia et al., Au(pyb-H)(mnt)]: A novel gold(III) 1,2-dithiolene cyclometalated complex with antimicrobial activity (pyb-H=C-deprotonated 2-benzylpyridine; mnt=1,2-dicyanoethene-1,2-dithiolate), J Inorg Biochem, vol.170, pp.188-194, 2017.

A. Vlcek, Dithiolenes and non-innocent redox-active ligands, Coord Chem Rev, vol.254, pp.1357-1588, 2010.

S. A. Sousa, J. H. Leitão, R. A. Silva, D. Belo, I. C. Santos et al.,

D. Martins, M. Fontinha, M. Prudêncio, D. Almeida, F. Lorcy et al., On the path to gold: monoanionic Au bisdithiolate complexes with antimicrobial and antitumor activities, J Inorg Biochem, vol.202, p.110904, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02364867

N. Tenn, N. Bellec, O. Jeannin, L. Piekara-sady, P. Auban-senzier et al.,

D. Canadell and . Lorcy, A single-component molecular metal based on a thiazole dithiolate gold complex, J Am Chem Soc, vol.131, pp.16961-16967, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01151145

A. Filatre-furcate, T. Roisnel, M. Fourmigué, O. Jeannin, N. Bellec et al., Subtle steric differences impact the structural and conducting properties of radical gold bis(dithiolene) complexes, Chem Eur J, vol.23, pp.16004-16013, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01636555

Y. L. Gal, T. Roisnel, P. Auban-senzier, T. Guizouarn, and D. Lorcy, Hydrogen bonding interactions in a single component molecular conductor: hydroxyethylsubstituted radical gold dithiolene complex, Inorg Chem, vol.53, pp.8755-8761, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01151681

M. M. Andrade, R. A. Silva, I. C. Santos, E. B. Lopes, S. Rabaça et al.,

J. T. Pereira, J. P. Coutinho, C. Telo, M. Rovira, D. Almeida et al., Gold and nickel alkyl substituted bis-thiophenedithiolene complexes: anionic and neutral forms Inorg Chem Front, vol.4, pp.270-280, 2017.

J. A. Hendrickson, C. Hu, S. L. Aitken, and N. Beyda, Antifungal resistance: a concerning trend for the present and future, Curr Infect Dis Rep, vol.21, p.47, 2019.

G. Fotakis and J. A. Timbrell, In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride, Toxicol Lett, vol.160, pp.171-177, 2006.

J. M. Cardoso, A. M. Galvão, S. I. Guerreiro, J. H. Leitão, A. C. Suarez et al.,

N. N. Carvalho, Antibacterial activity of silver camphorimine coordination polymers, Dalton Trans, vol.45, pp.7114-7123, 2016.

M. C. Arendrup, M. Cuenca-estrella, C. Lass-flörl, and W. Hope, EUCAST technical note on the EUCAST definitive document EDef 7.2: method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for yeasts EDef, EUCAST-AFST), vol.7, pp.246-247, 2012.

R. J. Lambert and J. Pearson, Susceptibility testing: accurate and reproducible minimum inhibitory concentration (MIC) and non-inhibitory concentration (NIC) values, J Appl Microbiol, vol.88, pp.784-790, 2000.

I. H. Ploemen, M. Prudêncio, B. G. Douradinha, J. Ramesar, J. Fonager et al.,

A. J. Gemert, C. C. Luty, R. W. Hermsen, F. G. Sauerwein, M. M. Baptista et al.,

I. Waters, C. W. Que, S. M. Lowik, C. J. Khan, and B. M. Janse, Franke-Fayard, Visualisation and quantitative analysis of the rodent malaria liver stage by real time imaging, PLoS ONE, vol.4, p.7881, 2009.

M. A. Barreiros, T. Pinheiro, M. F. Araujo, M. M. Costa, M. Palha et al., Quality assurance of X-ray spectrometry for chemical analysis, Spectrochimica Acta Part B-Atomic Spectroscopy, vol.56, pp.2095-2106, 2001.

S. R. Gallagher, Quantitation of DNA and RNA with absorption and fluorescence spectroscopy, Current Protocols in Molecular Biology, 1994.

A. Coutinho and M. Prieto, Ribonuclease T1 and alcohol dehydrogenase fluorescence quenching by acrylamide: A laboratory experiment for undergraduate students, J Chem Educ, vol.70, pp.425-428, 1993.

M. Kubista, R. Sjoback, S. Eriksson, and B. Albinsson, Experimental correction for the inner-filter effect in fluorescence-spectra, Analyst, vol.119, pp.417-419, 1994.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd, 2006.

R. J. Lesuer and W. E. Geiger, Ligand-solvent interactions in a highly reduced metal chelate complex: medium dependence of the one-electron reduction of the bis(maleonitriledithiolato)gold dianion, Inorg Chem, vol.48, pp.10826-10836, 2009.

Y. L. Gal, N. Bellec, F. Barrière, R. Clérac, M. Fourmigué et al., A Sulfur rich electron acceptor and its [Fe(Cp*)2]+ charge transfer salt with ferromagnetic interactions, vol.42, pp.16672-16679, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00908601

L. Aguinagalde, R. Díez-martínez, J. Yuste, I. Royo, C. Gil et al.,

. Sánchez-puelles, Auranofin efficacy against MDR Streptococcus pneumoniae and Staphylococcus aureus infections, J Antimicrob Chemother, vol.70, pp.2608-2617, 2015.

M. B. Harbut, C. Vilchèze, X. Luo, M. E. Hensler, H. Guo et al.,

V. Chatterjee, W. R. Nizet, P. G. Jacobs, F. Schultz, F. Wang et al., Auranofin exerts broad-spectrum bactericidal activities by targeting thiol-redox homeostasis, Proc Natl Acad Sci, vol.112, pp.4453-4458, 2015.

K. C. Hazen, Influence of DMSO on antifungal activity during susceptibility testing in vitro, Diagn Microbiol Infect Dis, vol.75, pp.60-63, 2013.

S. Thangamani, M. Maland, H. Mohammad, P. E. Pascuzzi, L. Avramova et al.,

T. R. Koehler, M. N. Hazbun, and . Seleem, Repurposing approach identifies auranofin with broad spectrum antifungal activity that targets Mia40-Erv1 pathway, Front Cell Infect Microbiol, vol.7, p.4, 2017.

M. Prudêncio, M. M. Mota, and A. M. Mendes, A toolbox to study liver stage malaria, Trends Parasitol, vol.27, pp.565-574, 2011.

F. P. Da-cruz, C. Martin, K. Buchholz, M. J. Lafuente-monasterio, T. Rodrigues et al.,

. Prudêncio, Drug screen targeted at Plasmodium liver stages identifies a potent multistage antimalarial drug, J Infect Dis, vol.205, pp.1278-1286, 2012.

P. A. Stocks, V. Barton, T. Antoine, G. A. Biagini, S. A. Ward et al., Novel inhibitors of the Plasmodium falciparum electron transport chain, vol.141, pp.50-65, 2014.

G. Camarda, P. Jirawatcharadech, R. S. Priestley, A. Saif, S. March et al.,

S. Wong, A. B. Leung, D. A. Miller, P. Baker, M. J. Alano et al.,

S. A. O'neill, G. A. Ward, and . Biagini, Antimalarial activity of primaquine operates via a two-step biochemical relay, Nat Commun, vol.10, p.3226, 2019.

N. Vale, R. Moreira, and P. Gomes, Primaquine revisited six decades after its discovery, Eur J Med Chem, vol.44, pp.937-953, 2009.

A. Bindoli, M. P. Rigobello, G. Scutari, C. Gabbiani, A. Casini et al., Thioredoxin reductase: A target for gold compounds acting as potential anticancer drugs, Coord Chem Rev, vol.253, pp.1692-1707, 2009.

V. Gandin and A. P. Fernandes, Metal-and semimetal-containing inhibitors of thioredoxin reductase as anticancer agents, Molecules, vol.20, pp.12732-12756, 2015.

J. Zhang, B. Zhang, X. Li, X. Han, R. Liu et al., Small molecule inhibitors of mammalian thioredoxin reductase as potential anticancer agents: An update, Med Res Rev, vol.39, pp.5-39, 2019.

A. Holmgren, M. Björnstedt, and T. , Methods Enzymol, vol.252, pp.199-208, 1995.

J. Olmsted, D. R. Kearns, and I. , Mechanism of ethidium bromide fluorescence enhancement on binding to nucleic acids, Biochemistry, vol.16, pp.3647-3654, 1977.

, Graphical Abstract (synopsis)

. Gold, III) bis(dithiolene) complexes were evaluated as therapeutic drugs